論文の概要: Coherent information for CSS codes under decoherence
- arxiv url: http://arxiv.org/abs/2407.02564v1
- Date: Tue, 2 Jul 2024 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:33:58.544853
- Title: Coherent information for CSS codes under decoherence
- Title(参考訳): デコヒーレンス下におけるCSS符号のコヒーレント情報
- Authors: Ryotaro Niwa, Jong Yeon Lee,
- Abstract要約: Calderbank-Shor-Steane (CSS) コードと呼ばれるクラスには、トーリックコード、カラーコード、フラクトンなど多くの重要な例が含まれている。
近年の研究では、これらのQECCの復号化遷移は、混合状態から情報理論量を計算することによって本質的に捕捉できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stabilizer codes lie at the heart of modern quantum-error-correcting codes (QECC). Of particular importance is a class called Calderbank-Shor-Steane (CSS) codes, which includes many important examples such as toric codes, color codes, and fractons. Recent studies have revealed that the decoding transition for these QECCs could be intrinsically captured by calculating information-theoretic quantities from the mixed state. Here we perform a simple analytic calculation of the coherent information for general CSS codes under local incoherent Pauli errors via diagonalization of the density matrices and mapping to classical statistical mechanical (SM) models. Our result establishes a rigorous connection between the decoding transition of the quantum code and the phase transition in the random classical SM model. It is also directly confirmed for CSS codes that exact error correction is possible if and only if the maximum-likelihood (ML) decoder always succeeds in the asymptotic limit. Thus, the fundamental threshold is saturated by the optimal decoder.
- Abstract(参考訳): 安定化器符号は、現代の量子エラー訂正符号(QECC)の中心に位置する。
特に重要なのは、Calderbank-Shor-Steane (CSS) コードと呼ばれるクラスで、トーリックコード、カラーコード、フラクトンなど多くの重要な例が含まれている。
近年の研究では、これらのQECCの復号遷移は、混合状態から情報理論量を計算することによって本質的に捕捉可能であることが示されている。
ここでは、密度行列の対角化と古典統計力学(SM)モデルへの写像により、局所的不整合パウリ誤差の下での一般的なCSS符号のコヒーレント情報を簡易に解析する。
この結果は、量子コードの復号化遷移と、ランダムな古典SMモデルにおける位相遷移との間の厳密な接続を確立する。
またCSSコードに対して、最大形(ML)デコーダが常に漸近的極限で成功する場合に限り、正確なエラー訂正が可能であることを直接確認する。
これにより、基本閾値は最適復号器によって飽和される。
関連論文リスト
- Understanding Stabilizer Codes Under Local Decoherence Through a General
Statistical Mechanics Mapping [0.0]
我々は、デコヒート基底状態密度行列の$n$thモーメントから古典的な統計力学モデルへの写像を構築する。
3次元トーリックコードとX-キューブモデルを解析し、その最適復号しきい値のバウンダリを導出する。
論文 参考訳(メタデータ) (2024-03-06T18:59:00Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Decoding general error correcting codes and the role of complementarity [2.66269503676104]
本稿では,Calderbank-Shor-Stean符号の復号回路を一般のQECCに簡単に拡張可能であることを示す。
次に, ブラックホール情報パラドックスの玩具モデルにおいて, 復号回路のパワーを実証する。
論文 参考訳(メタデータ) (2022-10-13T01:44:26Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
我々は、デコーダに様々な局所性制限を課すことにより、濃密な符号化について検討する。
このタスクでは、送信者アリスと受信機ボブが絡み合った状態を共有する。
論文 参考訳(メタデータ) (2021-09-26T07:29:54Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
トレリス復号器は強い構造を持ち、古典的符号化理論を用いて結果をガイドとして拡張し、復号グラフの構造特性を計算できる正準形式を示す。
修正されたデコーダは、任意の安定化コード$S$で動作し、コードの正規化子のコンパクトでグラフィカルな表現を構築するワンタイムオフライン、$Sperp$、Viterbiアルゴリズムを使った高速でパラレルなオンライン計算である。
論文 参考訳(メタデータ) (2021-06-15T16:01:42Z) - Trapping Sets of Quantum LDPC Codes [9.482750811734565]
量子トラップセット(QTS)を,そのトポロジカル構造とデコーダに基づいて同定し,分類する。
より優れたQLDPC符号やデコーダの設計にQTSの知識を利用できることを示す。
論文 参考訳(メタデータ) (2020-12-30T19:35:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。