Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
- URL: http://arxiv.org/abs/2407.02844v3
- Date: Mon, 15 Jul 2024 17:55:49 GMT
- Title: Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
- Authors: Pandiyaraju V, Shravan Venkatraman, Pavan Kumar S, Santhosh Malarvannan, Kannan A,
- Abstract summary: Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine.
This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer poses a profound threat to lives globally, claiming numerous lives each year. Therefore, timely detection is crucial for early intervention and improved chances of survival. Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine, demanding cutting-edge solutions for improved treatment strategies. This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images. A spatial channel attention mechanism is proposed for segmenting tumors from ultrasound images, utilizing a novel LinkNet DL framework with an InceptionResNet backbone. Following this, the paper proposes a deep convolutional neural network with an integrated multi-attention framework (DCNNIMAF) to classify the segmented tumor as benign, malignant, or normal. From experimental results, it is observed that the segmentation model has recorded an accuracy of 98.1%, with a minimal loss of 0.6%. It has also achieved high Intersection over Union (IoU) and Dice Coefficient scores of 96.9% and 97.2%, respectively. Similarly, the classification model has attained an accuracy of 99.2%, with a low loss of 0.31%. Furthermore, the classification framework has achieved outstanding F1-Score, precision, and recall values of 99.1%, 99.3%, and 99.1%, respectively. By offering a robust framework for early detection and accurate classification of breast cancer, this proposed work significantly advances the field of medical image analysis, potentially improving diagnostic precision and patient outcomes.
Related papers
- Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Convolutional neural network based on transfer learning for breast
cancer screening [0.0]
In this paper, a deep convolutional neural network-based algorithm is proposed to aid in accurately identifying breast cancer from ultrasonic images.
Several experiments were conducted on the breast ultrasound dataset consisting of 537 Benign, 360 malignant, and 133 normal images.
Using k-fold cross-validation and a bagging ensemble, we achieved an accuracy of 99.5% and a sensitivity of 99.6%.
arXiv Detail & Related papers (2021-12-22T02:27:12Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.