論文の概要: Zero-X: A Blockchain-Enabled Open-Set Federated Learning Framework for Zero-Day Attack Detection in IoV
- arxiv url: http://arxiv.org/abs/2407.02969v1
- Date: Wed, 3 Jul 2024 10:06:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:45:33.557650
- Title: Zero-X: A Blockchain-Enabled Open-Set Federated Learning Framework for Zero-Day Attack Detection in IoV
- Title(参考訳): Zero-X: IoVにおけるゼロデイ攻撃検出のためのブロックチェーン対応オープンセットフェデレーション学習フレームワーク
- Authors: Abdelaziz Amara korba, Abdelwahab Boualouache, Yacine Ghamri-Doudane,
- Abstract要約: インターネット・オブ・ビークルズ (Internet of Vehicles, IoV) は、インテリジェントトランスポーテーション・システムズ (ITS) にとって重要な技術である。
接続が拡大するにつれ、サイバーセキュリティの脅威が懸念されている。
0日とN日の攻撃を効果的に検出する革新的なセキュリティフレームワークであるZero-Xを提案する。
- 参考スコア(独自算出の注目度): 5.176552248390308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Vehicles (IoV) is a crucial technology for Intelligent Transportation Systems (ITS) that integrates vehicles with the Internet and other entities. The emergence of 5G and the forthcoming 6G networks presents an enormous potential to transform the IoV by enabling ultra-reliable, low-latency, and high-bandwidth communications. Nevertheless, as connectivity expands, cybersecurity threats have become a significant concern. The issue has been further exacerbated by the rising number of zero-day (0-day) attacks, which can exploit unknown vulnerabilities and bypass existing Intrusion Detection Systems (IDSs). In this paper, we propose Zero-X, an innovative security framework that effectively detects both 0-day and N-day attacks. The framework achieves this by combining deep neural networks with Open-Set Recognition (OSR). Our approach introduces a novel scheme that uses blockchain technology to facilitate trusted and decentralized federated learning (FL) of the ZeroX framework. This scheme also prioritizes privacy preservation, enabling both CAVs and Security Operation Centers (SOCs) to contribute their unique knowledge while protecting the privacy of their sensitive data. To the best of our knowledge, this is the first work to leverage OSR in combination with privacy-preserving FL to identify both 0-day and N-day attacks in the realm of IoV. The in-depth experiments on two recent network traffic datasets show that the proposed framework achieved a high detection rate while minimizing the false positive rate. Comparison with related work showed that the Zero-X framework outperforms existing solutions.
- Abstract(参考訳): Internet of Vehicles (IoV) は、インテリジェントトランスポーテーションシステム(ITS)にとって重要な技術であり、車両をインターネットや他のエンティティと統合する。
5Gと次の6Gネットワークの出現は、超信頼性、低レイテンシ、高帯域通信を可能にすることで、IoVを変換する大きな可能性を示す。
それでも、接続が拡大するにつれて、サイバーセキュリティの脅威は大きな問題となっている。
この問題は、未知の脆弱性を悪用し、既存の侵入検知システム(IDS)をバイパスできるゼロデイ(0日)攻撃の増加によってさらに悪化している。
本稿では,0日とN日の両方の攻撃を効果的に検出する革新的なセキュリティフレームワークであるZero-Xを提案する。
このフレームワークは、ディープニューラルネットワークとOpen-Set Recognition(OSR)を組み合わせることで、これを実現する。
当社のアプローチでは,ZeroXフレームワークの信頼性と分散化フェデレーション学習(FL)を促進するために,ブロックチェーン技術を使用した新たなスキームを導入している。
このスキームはまた、プライバシー保護を優先し、機密データのプライバシーを保護しながら、CAVとセキュリティ操作センター(SOC)の両方が独自の知識を貢献できるようにする。
我々の知る限りでは、これはOSRとプライバシー保護FLを組み合わせることで、IoVの領域における0日間とN日間の攻撃を識別する最初の試みである。
最近の2つのネットワークトラフィックデータセットの詳細な実験により、提案手法は偽陽性率を最小化しながら高い検出率を達成した。
関連する研究と比較すると、Zero-Xフレームワークは既存のソリューションよりも優れていた。
関連論文リスト
- Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles(CAV)は、5GおよびBeyondネットワーク(5GB)上にあり、セキュリティとプライバシ攻撃のベクトルの増加に対して脆弱である。
本稿では,ネットワークトラフィックパターンのみに依存する攻撃を検知するディープ・オートエンコーダ法を利用した新しい検出機構を提案する。
連合学習を用いて、提案した侵入検知システムは、CAVのプライバシーを維持し、通信オーバーヘッドを最小限に抑えながら、大規模で多様なネットワークトラフィックで訓練することができる。
論文 参考訳(メタデータ) (2024-07-03T12:42:31Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
論文 参考訳(メタデータ) (2024-03-29T12:01:31Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - Collaborative Learning for Cyberattack Detection in Blockchain Networks [29.481124078876032]
本稿では、侵入攻撃を調査し、ブロックチェーンネットワークのネットワーク層におけるサイバー攻撃を検出する新しいサイバー攻撃検出フレームワークを開発することを目的とする。
ブロックチェーンネットワークに効率的に配置して攻撃を検知できる新しい協調学習モデルを提案する。
集中シミュレーションと実時間実験の両方で、我々の提案した侵入検知フレームワークが攻撃検出において最大98.6%の精度を達成できることが明らかに示されている。
論文 参考訳(メタデータ) (2022-03-21T15:55:41Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。