論文の概要: Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
- arxiv url: http://arxiv.org/abs/2407.03925v2
- Date: Wed, 02 Oct 2024 19:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-05 03:34:08.149919
- Title: Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
- Title(参考訳): 減階ニューラル演算子:高スパースグラフ上でのラグランジアンダイナミクスの学習
- Authors: Hrishikesh Viswanath, Yue Chang, Julius Berner, Peter Yichen Chen, Aniket Bera,
- Abstract要約: 本稿では, 流体流動, 粒状流, エラスト塑性などのラグランジアン力学のシミュレーションを, ニューラル演算子に基づく低次モデリングにより高速化することを提案する。
我々のフレームワークは、任意の空間的離散化をトレーニングし、ニューラル演算子を通してこれらの離散化のスパースサンプリングの時間的ダイナミクスを計算する。
- 参考スコア(独自算出の注目度): 20.271792055491662
- License:
- Abstract: We propose accelerating the simulation of Lagrangian dynamics, such as fluid flows, granular flows, and elastoplasticity, with neural-operator-based reduced-order modeling. While full-order approaches simulate the physics of every particle within the system, incurring high computation time for dense inputs, we propose to simulate the physics on sparse graphs constructed by sampling from the spatially discretized system. Our discretization-invariant reduced-order framework trains on any spatial discretizations and computes temporal dynamics on any sparse sampling of these discretizations through neural operators. Our proposed approach is termed Graph Informed Optimized Reduced-Order Modeling or \textit{GIOROM}. Through reduced order modeling, we ensure lower computation time by sparsifying the system by 6.6-32.0$\times$, while ensuring high-fidelity full-order inference via neural fields. We show that our model generalizes to a range of initial conditions, resolutions, and materials. The code and the demos are provided at \url{https://github.com/HrishikeshVish/GIOROM}
- Abstract(参考訳): 本稿では, 流体流動, 粒状流, エラスト塑性などのラグランジアン力学のシミュレーションを, ニューラル演算子に基づく低次モデリングにより高速化することを提案する。
システム内の各粒子の物理を全順序でシミュレートし,高計算時間で高密度入力を行う一方で,空間的離散化システムからのサンプリングによって構築されたスパースグラフ上での物理をシミュレートすることを提案する。
我々の離散化不変な低次フレームワークは、任意の空間的離散化を訓練し、ニューラル演算子を通してこれらの離散化のスパースサンプリングの時間的ダイナミクスを計算する。
提案手法は,Graph Informed Optimized Reduced-Order Modeling あるいは \textit{GIOROM} と呼ばれる。
オーダーモデリングの削減により、システムの6.6~32.0$\times$をスペーシングし、ニューラルネットワークによる高忠実度フルオーダー推論を保証し、より低い計算時間を確保できる。
我々は,本モデルが初期条件,解像度,材料の範囲に一般化されていることを示す。
コードとデモは \url{https://github.com/HrishikeshVish/GIOROM} で提供されている。
関連論文リスト
- From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
ニューラル常微分方程式(NODE)を学習するためのシミュレーション不要なフレームワークを提案する。
フーリエ解析を用いて、ノイズの多い観測データから時間的および潜在的高次空間勾配を推定する。
我々の手法は、トレーニング時間、ダイナミクス予測、堅牢性の観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-19T13:15:23Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Tensor network reduced order models for wall-bounded flows [0.0]
縮小順序モデルを開発するために,広く適用可能なテンソルネットワークベースのフレームワークを提案する。
二つの空間次元における非圧縮性ナビエ・ストークス方程式と蓋駆動キャビティを考える。
論文 参考訳(メタデータ) (2023-03-06T10:33:00Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Losing momentum in continuous-time stochastic optimisation [42.617042045455506]
運動量に基づく最適化アルゴリズムは 特に広まりました
本研究では、運動量を伴う勾配降下の連続時間モデルを解析する。
また、画像分類問題において畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-09-08T10:46:05Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。