論文の概要: Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling
- arxiv url: http://arxiv.org/abs/2407.04525v3
- Date: Tue, 15 Oct 2024 12:51:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 23:46:45.225873
- Title: Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling
- Title(参考訳): 神経の異質性と神経調節シグナルによるスパイキングニューラルネットワークの学習の促進
- Authors: Alejandro Rodriguez-Garcia, Jie Mei, Srikanth Ramaswamy,
- Abstract要約: 人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
- 参考スコア(独自算出の注目度): 52.06722364186432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in artificial intelligence (AI) has been driven by insights from neuroscience, particularly with the development of artificial neural networks (ANNs). This has significantly enhanced the replication of complex cognitive tasks such as vision and natural language processing. Despite these advances, ANNs struggle with continual learning, adaptable knowledge transfer, robustness, and resource efficiency - capabilities that biological systems handle seamlessly. Specifically, ANNs often overlook the functional and morphological diversity of the brain, hindering their computational capabilities. Furthermore, incorporating cell-type specific neuromodulatory effects into ANNs with neuronal heterogeneity could enable learning at two spatial scales: spiking behavior at the neuronal level, and synaptic plasticity at the circuit level, thereby potentially enhancing their learning abilities. In this article, we summarize recent bio-inspired models, learning rules and architectures and propose a biologically-informed framework for enhancing ANNs. Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors and dendritic compartments to simulate morphological and functional diversity of neuronal computations. Finally, we outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, balances bioinspiration and complexity, and provides scalable solutions for pressing AI challenges, such as continual learning, adaptability, robustness, and resource-efficiency.
- Abstract(参考訳): 人工知能(AI)の最近の進歩は、神経科学の知見、特に人工ニューラルネットワーク(ANN)の開発によってもたらされている。
これにより、視覚や自然言語処理といった複雑な認知タスクの複製が大幅に向上した。
これらの進歩にもかかわらず、ANNは継続的な学習、適応可能な知識伝達、堅牢性、リソース効率に苦慮している。
特に、ANNは脳の機能的および形態的多様性を見落とし、計算能力を妨げていることが多い。
さらに、神経細胞の不均一性を伴うANNに細胞型特異的神経調節効果を組み込むことで、神経レベルでのスパイク行動と回路レベルでのシナプス可塑性の2つの空間スケールでの学習が可能となり、それによって学習能力が向上する可能性がある。
本稿では、最近のバイオインスパイアされたモデル、学習ルール、アーキテクチャを要約し、ANNの強化のための生物学的インフォームド・フレームワークを提案する。
提案手法は, 種々のスパイキング挙動をエミュレートするスパイキングニューラルネットワーク(SNN)や, 神経計算の形態的, 機能的多様性をシミュレートする樹状体コンパートメントの可能性を明らかにするものである。
最後に、提案手法が脳にインスパイアされたコンパートメントモデルとタスク駆動SNNを統合し、バイオインスピレーションと複雑性のバランスをとり、継続的な学習、適応性、堅牢性、リソース効率といったAI課題に対処するためのスケーラブルなソリューションを提供する方法について概説する。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Research Advances and New Paradigms for Biology-inspired Spiking Neural Networks [8.315801422499861]
スパイキングニューラルネットワーク(SNN)は、計算シミュレーションと人工知能の分野で人気を集めている。
本稿では,SNNの歴史的発展を考察し,これら2つの分野が相互に交わり,急速に融合していることを結論する。
論文 参考訳(メタデータ) (2024-08-26T03:37:48Z) - Astrocyte-Enabled Advancements in Spiking Neural Networks for Large
Language Modeling [7.863029550014263]
Astrocyte-Modulated Spiking Neural Network (AstroSNN) は、記憶保持や自然言語生成に関わるタスクにおいて、例外的な性能を示す。
AstroSNNは、実用的なアプリケーションで低レイテンシ、高スループット、メモリ使用量の削減を示す。
論文 参考訳(メタデータ) (2023-12-12T06:56:31Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
軸-体性および軸-体性シナプスを模擬した神経接続概念を導入する。
我々は,大規模ASRモデルの生物学的に現実的な実装によって,競争性能が向上できることを初めて実証した。
論文 参考訳(メタデータ) (2021-10-04T21:24:10Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。