論文の概要: Evaluating Language Models for Generating and Judging Programming Feedback
- arxiv url: http://arxiv.org/abs/2407.04873v1
- Date: Fri, 5 Jul 2024 21:44:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:16:57.703912
- Title: Evaluating Language Models for Generating and Judging Programming Feedback
- Title(参考訳): プログラミングフィードバックの生成と判断のための言語モデルの評価
- Authors: Charles Koutcheme, Nicola Dainese, Arto Hellas, Sami Sarsa, Juho Leinonen, Syed Ashraf, Paul Denny,
- Abstract要約: 大規模言語モデル(LLM)は、幅広い分野の研究と実践を変革してきた。
我々は,オープンソースのLCMのプログラミング課題に対する高品質なフィードバック生成における効率性を評価する。
- 参考スコア(独自算出の注目度): 4.743413681603463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of large language models (LLMs) has transformed research and practice in a wide range of domains. Within the computing education research (CER) domain, LLMs have received plenty of attention especially in the context of learning programming. Much of the work on LLMs in CER has however focused on applying and evaluating proprietary models. In this article, we evaluate the efficiency of open-source LLMs in generating high-quality feedback for programming assignments, and in judging the quality of the programming feedback, contrasting the results against proprietary models. Our evaluations on a dataset of students' submissions to Python introductory programming exercises suggest that the state-of-the-art open-source LLMs (Meta's Llama3) are almost on-par with proprietary models (GPT-4o) in both the generation and assessment of programming feedback. We further demonstrate the efficiency of smaller LLMs in the tasks, and highlight that there are a wide range of LLMs that are accessible even for free for educators and practitioners.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、幅広い分野の研究と実践に変化をもたらした。
コンピュータ教育研究(CER)分野において、LLMは特にプログラミング学習の文脈において多くの注目を集めている。
しかし、CERにおけるLLMの研究の多くは、プロプライエタリなモデルの適用と評価に重点を置いている。
本稿では,プログラミングの課題に対する高品質なフィードバックを生成するためのオープンソースのLLMの効率を評価し,プログラミングのフィードバックの質を判断し,プロプライエタリなモデルと対比する。
学生によるPython導入プログラミング演習のデータセットに対する評価は、現状のオープンソースLLM(MetaのLlama3)は、プログラミングフィードバックの生成と評価の両方において、プロプライエタリなモデル(GPT-4o)とほぼ同等であることを示している。
さらに, タスクにおけるLLMの効率性を実証し, 教育者や実践者が自由に利用できる広い範囲のLLMがあることを強調した。
関連論文リスト
- LLM4VV: Exploring LLM-as-a-Judge for Validation and Verification Testsuites [6.796136787585992]
大規模言語モデル(LLM)は進化し、ソフトウェア開発のランドスケープに大きな革命をもたらしています。
本稿では,ディレクティブプログラミングモデルのコンパイラ実装を評価するために使用されるテストの判定について考察する。
論文 参考訳(メタデータ) (2024-08-21T15:54:17Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - On the Evaluation of Large Language Models in Unit Test Generation [16.447000441006814]
単体テストは、ソフトウェアコンポーネントの正しさを検証するために、ソフトウェア開発において不可欠な活動である。
LLM(Large Language Models)の出現は、ユニットテスト生成を自動化するための新しい方向性を提供する。
論文 参考訳(メタデータ) (2024-06-26T08:57:03Z) - A Survey Study on the State of the Art of Programming Exercise Generation using Large Language Models [0.0]
本稿では,Large Language Models (LLM) のプログラミング演習生成能力について分析する。
調査研究を通じて,技術の現状を定義し,その強みと弱みを抽出し,評価行列を提案した。
論文 参考訳(メタデータ) (2024-05-30T15:49:34Z) - Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs [30.179703001666173]
大規模言語モデル(LLM)にとって、ファクチュアリティの問題は重要な問題である
我々は,かなり大きなテストデータセットを用いて,LLMの性能を評価するためにGraphEvalを提案する。
テストデータセットは、高価な人的努力なしで1000万以上の事実を持つ大規模な知識グラフから取得される。
論文 参考訳(メタデータ) (2024-04-01T06:01:17Z) - Linguistic Intelligence in Large Language Models for Telecommunications [5.06945923921948]
自然言語処理(NLP)分野において,Large Language Models (LLMs) が大きな進歩を遂げている。
本研究は,電気通信分野におけるLLMの知識と理解能力を評価することを目的とする。
評価の結果,ゼロショットLLMは現状の細調整モデルに匹敵する性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-02-24T14:01:07Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。