論文の概要: Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural Network
- arxiv url: http://arxiv.org/abs/2407.05521v1
- Date: Sun, 7 Jul 2024 23:57:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:29:37.363042
- Title: Accelerating MRI Uncertainty Estimation with Mask-based Bayesian Neural Network
- Title(参考訳): Mask-based Bayesian Neural Network を用いたMRI不確かさ推定の高速化
- Authors: Zehuan Zhang, Matej Genci, Hongxiang Fan, Andreas Wetscherek, Wayne Luk,
- Abstract要約: 本稿では,高性能で信頼性の高いMRI解析のためのアルゴリズム・ハードウェア協調最適化フローを提案する。
アルゴリズムレベルでは、IVIM-NETをマスクベースのベイズニューラルネットワーク(BayesNN)に変換するための変換設計フローが導入された。
ハードウェアレベルでは、マスクゼロスキップやオペレーティングリオーダなど、いくつかのハードウェア最適化を備えたFPGAベースのアクセラレータを提案する。
- 参考スコア(独自算出の注目度): 7.062728225568675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reliable Magnetic Resonance Imaging (MRI) analysis is particularly important for adaptive radiotherapy, a recent medical advance capable of improving cancer diagnosis and treatment. Recent studies have shown that IVIM-NET, a deep neural network (DNN), can achieve high accuracy in MRI analysis, indicating the potential of deep learning to enhance diagnostic capabilities in healthcare. However, IVIM-NET does not provide calibrated uncertainty information needed for reliable and trustworthy predictions in healthcare. Moreover, the expensive computation and memory demands of IVIM-NET reduce hardware performance, hindering widespread adoption in realistic scenarios. To address these challenges, this paper proposes an algorithm-hardware co-optimization flow for high-performance and reliable MRI analysis. At the algorithm level, a transformation design flow is introduced to convert IVIM-NET to a mask-based Bayesian Neural Network (BayesNN), facilitating reliable and efficient uncertainty estimation. At the hardware level, we propose an FPGA-based accelerator with several hardware optimizations, such as mask-zero skipping and operation reordering. Experimental results demonstrate that our co-design approach can satisfy the uncertainty requirements of MRI analysis, while achieving 7.5 times and 32.5 times speedup on an Xilinx VU13P FPGA compared to GPU and CPU implementations with reduced power consumption.
- Abstract(参考訳): 近年, 癌診断と治療の改善にともなう医学的進歩である, 適応放射線治療において, 高精度で信頼性の高いMRI解析が特に重要である。
近年の研究では、ディープニューラルネットワーク(DNN)であるIVIM-NETがMRI解析において高い精度を達成できることが示されている。
しかし、IVIM-NETは、医療における信頼できる信頼できる予測に必要な、校正された不確実性情報を提供していない。
さらに、IVIM-NETの高価な計算とメモリ要求によりハードウェアの性能が低下し、現実的なシナリオでは広く採用されなくなる。
これらの課題に対処するために,高速で信頼性の高いMRI解析のためのアルゴリズム・ハードウェア協調最適化フローを提案する。
アルゴリズムレベルでは、IVIM-NETをマスクベースのベイズニューラルネットワーク(BayesNN)に変換するための変換設計フローが導入された。
ハードウェアレベルでは、マスクゼロスキップやオペレーティングリオーダなど、いくつかのハードウェア最適化を備えたFPGAベースのアクセラレータを提案する。
Xilinx VU13P FPGA で 7.5 倍, 32.5 倍の高速化を実現し, 消費電力を削減した GPU や CPU 実装と比較して, 共同設計手法がMRI 解析の不確実性を満たすことを示した。
関連論文リスト
- Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning [45.3610312584439]
拡散磁気共鳴イメージング(dMRI)は神経画像研究において重要な技術であり、脳組織の基盤構造を非侵襲的に探究することができる。
臨床dMRIデータは、取得中に様々なアーティファクトに影響を受けやすいため、信頼性の低いその後の分析に繋がる可能性がある。
我々は、$textbfU$n $textbfd$MRI $textbfA$rtifact $textbfD$etection via $textbfA$ngular Resolution Enhancement and $textbfC$ycleと呼ばれる新しい教師なしディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:56:10Z) - CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
本稿では,新しいハイブリッド量子古典型機械学習パイプラインであるCompressedMediQを紹介する。
高次元のマルチクラス・ニューロイメージングデータ解析に関連する計算課題に対処する。
論文 参考訳(メタデータ) (2024-09-13T07:03:01Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Informative Priors Improve the Reliability of Multimodal Clinical Data
Classification [7.474271086307501]
ニューラルネットワークを考慮し、ネットワークパラメータよりも先に分布する、テーラーメイドのマルチモーダルデータ駆動型(M2D2)を設計する。
我々は、M2D2以前のベイズニューラルネットワークをトレーニングするために、単純でスケーラブルな平均場変動推定を用いる。
実験の結果,提案手法は決定論的およびベイズ的ニューラルネットワークベースラインと比較して,より信頼性の高い予測モデルを生成することがわかった。
論文 参考訳(メタデータ) (2023-11-17T03:44:15Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
インターネット・オブ・メディカル・モノズ(IoMT)パラダイムは、複数の臨床試験や医療処置で主流になりつつある。
本研究では,資源制約型コンピューティングプラットフォームにおける認知データ解析アルゴリズムの実装について検討する。
コンボリューションニューラルネットワークを用いて心電図のトレースを分類する手法について検討した。
論文 参考訳(メタデータ) (2021-06-11T16:49:10Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。