論文の概要: Kinetic Interacting Particle Langevin Monte Carlo
- arxiv url: http://arxiv.org/abs/2407.05790v1
- Date: Mon, 8 Jul 2024 09:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:10:47.252532
- Title: Kinetic Interacting Particle Langevin Monte Carlo
- Title(参考訳): モンテカルロの速度論的相互作用粒子ランゲヴィン
- Authors: Paul Felix Valsecchi Oliva, O. Deniz Akyildiz,
- Abstract要約: 本稿では,潜在変数モデルにおける統計的推論のためのアンダーダム付きランゲヴィンアルゴリズムの相互作用と解析について述べる。
本稿では,パラメータと潜伏変数の空間内で共同で進化する拡散過程を提案する。
統計モデルのパラメータを推定する実用的なアルゴリズムとして,この拡散について2つの明確な考察を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent variables and exploit the fact that the stationary distribution of this diffusion concentrates around the maximum marginal likelihood estimate of the parameters. We then provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models. For each algorithm, we obtain nonasymptotic rates of convergence for the case where the joint log-likelihood is strongly concave with respect to latent variables and parameters. In particular, we provide convergence analysis for the diffusion together with the discretisation error, providing convergence rate estimates for the algorithms in Wasserstein-2 distance. To demonstrate the utility of the introduced methodology, we provide numerical experiments that demonstrate the effectiveness of the proposed diffusion for statistical inference and the stability of the numerical integrators utilised for discretisation. Our setting covers a broad number of applications, including unsupervised learning, statistical inference, and inverse problems.
- Abstract(参考訳): 本稿では、潜伏変数モデルにおける統計的推測のために、Kineetic Interacting Particle Langevin Monte Carlo (KIPLMC) 法と呼ばれる、アンダーダム付きランゲインアルゴリズムの相互作用を紹介し、解析する。
本稿では,パラメータと潜伏変数の空間内で共同で進化する拡散過程を提案し,この拡散の定常分布がパラメータの最大限界推定値の周りに集中しているという事実を利用する。
次に、統計モデルのパラメータを推定する実用的なアルゴリズムとして、この拡散について2つの明確な考察を行う。
各アルゴリズムに対して、潜伏変数やパラメータに関して、関節の対数類似度が強い場合の非漸近収束率を求める。
特に,拡散の収束解析を離散化誤差とともに提供し,ワッサーシュタイン2距離におけるアルゴリズムの収束率推定を行う。
提案手法の有用性を実証するために, 統計的推測のための拡散法の有効性と, 離散化に利用した数値積分器の安定性を示す数値実験を行った。
私たちの設定では、教師なし学習、統計的推論、逆問題など、幅広い応用をカバーしています。
関連論文リスト
- Non-asymptotic Convergence of Discrete-time Diffusion Models: New Approach and Improved Rate [49.97755400231656]
我々はDT拡散過程下での分布のかなり大きなクラスに対する収束保証を確立する。
次に、明示的なパラメータ依存を持つ分布の多くの興味深いクラスに結果を専門化します。
そこで本研究では,新しい加速型サンプリング器を提案し,対応する正則サンプリング器の収束率を,全てのシステムパラメータに対して桁違いに向上することを示す。
論文 参考訳(メタデータ) (2024-02-21T16:11:47Z) - Weighted Riesz Particles [0.0]
対象分布を、パラメータの無限次元空間が多くの決定論的部分多様体からなる写像と考える。
我々は、Rieszと呼ばれる点の性質を研究し、それをシーケンシャルMCMCに埋め込む。
低い評価で高い受け入れ率が得られることが分かりました。
論文 参考訳(メタデータ) (2023-12-01T14:36:46Z) - A Geometric Perspective on Diffusion Models [60.69328526215776]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングを検証し,そのサンプリングダイナミクスの興味深い構造を明らかにした。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Copula-Based Density Estimation Models for Multivariate Zero-Inflated
Continuous Data [0.0]
ゼロインフレート連続変数間の多変量相関に対処できる2つのコプラに基づく密度推定モデルを提案する。
ゼロインフレーションデータにおける結び付きデータ問題によるコプラの使用の難しさを克服するために,我々は新しいタイプのコプラ,補正されたガウスコプラを提案する。
論文 参考訳(メタデータ) (2023-04-02T13:43:37Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
重み付き多孔質媒質方程式(WPME)に対する決定論的粒子法を開発し,その収束性を時間間隔で証明する。
提案手法は,マルチエージェントカバレッジアルゴリズムや確率測定のサンプリングに自然に応用できる。
論文 参考訳(メタデータ) (2022-02-25T19:49:05Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning interaction kernels in stochastic systems of interacting
particles from multiple trajectories [13.3638879601361]
相互作用する粒子やエージェントのシステムと、相互作用カーネルによって決定されるダイナミクスを考察する。
正規化極大推定器に基づく逆問題に対する非パラメトリック推論手法を提案する。
相関条件により,この問題の条件数を制御し,推定器の整合性を証明することができることを示す。
論文 参考訳(メタデータ) (2020-07-30T01:28:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。