論文の概要: QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train
- arxiv url: http://arxiv.org/abs/2407.06103v1
- Date: Mon, 8 Jul 2024 16:41:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 14:51:28.475108
- Title: QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train
- Title(参考訳): QTRL:量子トレインによる実用的な量子強化学習を目指して
- Authors: Chen-Yu Liu, Chu-Hsuan Abraham Lin, Chao-Han Huck Yang, Kuan-Cheng Chen, Min-Hsiu Hsieh,
- Abstract要約: 我々はQTRLと呼ばれる強化学習タスクにQuantum-Train法を適用し、古典的なポリシーネットワークモデルを訓練する。
QTRLのトレーニング結果は古典的なモデルであり、推論段階は古典的なコンピュータのみを必要とする。
- 参考スコア(独自算出の注目度): 18.138290778243075
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum reinforcement learning utilizes quantum layers to process information within a machine learning model. However, both pure and hybrid quantum reinforcement learning face challenges such as data encoding and the use of quantum computers during the inference stage. We apply the Quantum-Train method to reinforcement learning tasks, called QTRL, training the classical policy network model using a quantum machine learning model with polylogarithmic parameter reduction. This QTRL approach eliminates the data encoding issues of conventional quantum machine learning and reduces the training parameters of the corresponding classical policy network. Most importantly, the training result of the QTRL is a classical model, meaning the inference stage only requires classical computer. This is extremely practical and cost-efficient for reinforcement learning tasks, where low-latency feedback from the policy model is essential.
- Abstract(参考訳): 量子強化学習は、量子層を利用して機械学習モデル内の情報を処理する。
しかし、純粋かつハイブリッドな量子強化学習は、データ符号化や推論段階での量子コンピュータの使用といった課題に直面している。
量子トレイン法をQTRLと呼ばれる強化学習タスクに適用し,多対数パラメータ還元を用いた量子機械学習モデルを用いて古典的政策ネットワークモデルを訓練する。
このQTRLアプローチは、従来の量子機械学習のデータを符号化する問題を排除し、対応する古典的ポリシーネットワークのトレーニングパラメータを低減する。
最も重要なことは、QTRLのトレーニング結果は古典的なモデルであり、推論段階は古典的なコンピュータのみを必要とすることである。
これは、ポリシーモデルからの低遅延フィードバックが不可欠である強化学習タスクにおいて、極めて実用的でコスト効率が高い。
関連論文リスト
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [5.295820453939521]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Adapting Pre-trained Language Models for Quantum Natural Language
Processing [33.86835690434712]
事前学習された表現は、エンドツーエンドの量子モデルの容量を50%から60%増加させることができることを示す。
量子シミュレーション実験では、事前訓練された表現は、エンドツーエンドの量子モデルの容量を50%から60%増加させることができる。
論文 参考訳(メタデータ) (2023-02-24T14:59:02Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。