論文の概要: Transforming qubits via quasi-geometric approaches
- arxiv url: http://arxiv.org/abs/2407.07562v1
- Date: Wed, 10 Jul 2024 11:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:51:55.716612
- Title: Transforming qubits via quasi-geometric approaches
- Title(参考訳): 準幾何学的アプローチによる量子ビット変換
- Authors: Nyirahafashimana Valentine, Nurisya Mohd Shah, Umair Abdul Halim, Sharifah Kartini Said Husain, Ahmed Jellal,
- Abstract要約: 少数の量子ビットをより大きな数の誤り訂正量子ビットに変換する理論を開発する。
2次元の準直交完全補完符号 (2D-QOCCCSs) と準巡回非対称量子誤り訂正符号 (AQECCs) を準群および群理論特性を介して用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a theory based on quasi-geometric (QG) approach to transform a small number of qubits into a larger number of error-correcting qubits by considering four different cases. More precisely, we use the 2-dimensional quasi-orthogonal complete complementary codes (2D-QOCCCSs) and quasi-cyclic asymmetric quantum error-correcting codes (AQECCs) via quasigroup and group theory properties. We integrate the Pauli $X$-gate to detect and correct errors, as well as the Hadamard $H$-gate to superpose the initial and final qubits in the quantum circuit diagram. We compare the numerical results to analyze the success, consistency, and performance of the corrected errors through bar graphs for 2D-QOCCCs and AQECCs according to their characteristics. The difficulty in generating additional sets of results and counts for AQECCs arises because mapping a smaller initial number of qubits to a larger final number is necessary to correct more errors. For AQECCs, the number of errors that can be corrected must be equal to or less than the initial number of qubits. High error correction performance is observed when mapping 1-qubit state to 29-qubits to correct 5 errors using 2D-QOCCCs. Similarly, transforming 1-qubit to 13-qubits using AQECCs also shows high performance, successfully correcting 2 errors. The results show that our theory has the advantage of providing a basis for refining and optimizing these codes in future quantum computing applications due to its high performance in error correction.
- Abstract(参考訳): 擬幾何法(QG)に基づく理論を開発し、4つの異なるケースを考慮し、少数の量子ビットをより大きな数の誤り訂正量子ビットに変換する。
より正確には、2次元の準直交完全補完符号 (2D-QOCCCSs) と準巡回非対称量子誤り訂正符号 (AQECCs) を準群および群理論特性を介して用いる。
パウリの$X$-gate(英語版)とアダマールの$H$-gate(英語版)を統合し、量子回路図における初期および最終量子ビットを重畳する。
本研究では,2D-QOCCCとAQECCのバーグラフを用いて数値計算結果を比較し,その特性を解析した。
AQECC に対する追加結果の生成とカウントの難しさは、より多くのエラーを補正するためには、より小さな初期量子ビットをより大きな最終数にマッピングする必要があるためである。
AQECC の場合、修正可能なエラーの数は、初期量子ビットの数に等しいかそれ以下でなければならない。
1キュービット状態を29キュービットにマッピングして5エラーを2D-QOCCCで補正する場合、高い誤差補正性能が観察される。
同様に、AQECCを用いた1量子ビットから13量子ビットへの変換も高い性能を示し、2つのエラーの修正に成功した。
以上の結果から, この理論は, 誤り訂正における高い性能のため, 将来の量子コンピューティングアプリケーションにおいて, それらのコードの改良と最適化の基盤を提供するという利点があることがわかった。
関連論文リスト
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
本稿では,リングアーキテクチャ上での小さな距離に対する循環安定化器を用いた5ビット完全符号の資源効率のスケーリングを提案する。
非隣り合うデータ量子ビットに絡み合ったアンシラを持つ補正符号の量子回路を構築する方法を示す。
論文 参考訳(メタデータ) (2022-11-06T12:22:23Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
2量子ゲートは量子コンピューティングの重要な構成要素である。
しかし、量子ビット間の不要な相互作用(いわゆる寄生ゲート)は、量子アプリケーションの性能を低下させる。
寄生性2ビットゲート誤差を軽減するための2つのソフトウェア手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T17:37:27Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
量子ビットおよび量子ビットとして表される高次量子系の誤りを補正するための新しい量子誤り訂正符号のクラスについて検討する。
これらの符号は、元のグラフ理論による量子エラーの集合の表現に由来する。
本稿では,従来よりも高い符号化率を実現する完全相関雑音に対する最適符号化と,単一キューディットに対する最小符号化の2つの例を示す。
論文 参考訳(メタデータ) (2021-10-16T00:04:24Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。