論文の概要: Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry
- arxiv url: http://arxiv.org/abs/2407.10484v1
- Date: Mon, 15 Jul 2024 07:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 16:00:42.062972
- Title: Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry
- Title(参考訳): リーマン幾何学のレンズによる共分散プールにおける行列関数正規化の理解
- Authors: Ziheng Chen, Yue Song, Xiao-Jun Wu, Gaowen Liu, Nicu Sebe,
- Abstract要約: グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
- 参考スコア(独自算出の注目度): 63.694184882697435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations. GCP typically performs classification of the covariance matrices by applying matrix function normalization, such as matrix logarithm or power, followed by a Euclidean classifier. However, covariance matrices inherently lie in a Riemannian manifold, known as the Symmetric Positive Definite (SPD) manifold. The current literature does not provide a satisfactory explanation of why Euclidean classifiers can be applied directly to Riemannian features after the normalization of the matrix power. To mitigate this gap, this paper provides a comprehensive and unified understanding of the matrix logarithm and power from a Riemannian geometry perspective. The underlying mechanism of matrix functions in GCP is interpreted from two perspectives: one based on tangent classifiers (Euclidean classifiers on the tangent space) and the other based on Riemannian classifiers. Via theoretical analysis and empirical validation through extensive experiments on fine-grained and large-scale visual classification datasets, we conclude that the working mechanism of the matrix functions should be attributed to the Riemannian classifiers they implicitly respect.
- Abstract(参考訳): グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
GCPは通常、行列対数やパワーなどの行列関数正規化を適用して共分散行列の分類を行い、次いでユークリッド分類器を用いる。
しかし、共分散行列は本質的にリーマン多様体(Symmetric Positive Definite (SPD) manifold)と呼ばれる)の中に存在する。
現在の文献は、なぜユークリッド分類器が行列パワーの正規化後にリーマン的特徴に直接適用できるのかを十分に説明していない。
このギャップを緩和するために、この論文はリーマン幾何学の観点から行列対数とパワーの包括的かつ統一的な理解を提供する。
GCPにおける行列関数の基本的なメカニズムは、接分類器(接空間上のユークリッド分類器)に基づくものと、リーマン分類器に基づくものである。
細粒度および大規模視覚分類データセットの広範な実験による理論的解析と実証的検証により、行列関数の作用機構は、それらが暗黙的に尊重するリーマン分類器に帰属するべきであると結論づける。
関連論文リスト
- Optimal Matrix-Mimetic Tensor Algebras via Variable Projection [0.0]
行列緩和性(Matrix mimeticity)は、テンソルを、行列に類似した乗算、分解、解析が可能な作用素として解釈することから生じる。
我々は、データの事前の知識に頼ることなく、最適線形写像と対応するテンソル表現を学習する。
可変射影型アルゴリズムの変換と収束解析の独創性理論を提供する。
論文 参考訳(メタデータ) (2024-06-11T04:52:23Z) - Synergistic eigenanalysis of covariance and Hessian matrices for
enhanced binary classification [75.90957645766676]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
我々のアプローチは、クラス間の平均距離を最大化し、クラス内の分散を最小化する能力を確立する形式的な証明によって裏付けられている。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Riemannian statistics meets random matrix theory: towards learning from
high-dimensional covariance matrices [2.352645870795664]
本稿では,高次元共分散行列の空間上でのリーマン・ガウス分布に関連する正規化因子の計算方法が存在しないことを示す。
この欠落法は、ランダム行列理論との予期せぬ新しい関係から来ていることが示されている。
シミュレーション実験により、この新たな近似が現実のデータセットへの応用を妨げる困難を解き放つ方法が示されている。
論文 参考訳(メタデータ) (2022-03-01T03:16:50Z) - Robust Geometric Metric Learning [17.855338784378]
本稿では,計量学習問題に対する新しいアルゴリズムを提案する。
その後、Robust Geometric Metric Learning (RGML)と呼ばれる一般的な手法が研究される。
RGMLのパフォーマンスは、実際のデータセット上で保証される。
論文 参考訳(メタデータ) (2022-02-23T14:55:08Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
科学計算および機械学習アプリケーションでは、行列およびより一般的な多次元配列(テンソル)は、しばしば低ランク分解の助けを借りて近似することができる。
低ランク近似を見つけるための一般的なツールの1つはリーマン最適化を使うことである。
論文 参考訳(メタデータ) (2021-03-27T19:56:00Z) - Probabilistic Learning Vector Quantization on Manifold of Symmetric
Positive Definite Matrices [3.727361969017079]
本研究では,確率論的学習ベクトル量子化の枠組みにおける多様体値データの新しい分類法を開発した。
本稿では,対称正定値行列の多様体上に存在するデータ点に対する確率論的学習ベクトル量子化アルゴリズムを一般化する。
合成データ,画像データ,運動画像脳波データに関する実証的研究は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-01T06:58:39Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。