論文の概要: Systematic Literature Review of AI-enabled Spectrum Management in 6G and Future Networks
- arxiv url: http://arxiv.org/abs/2407.10981v1
- Date: Wed, 12 Jun 2024 11:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:49:16.690197
- Title: Systematic Literature Review of AI-enabled Spectrum Management in 6G and Future Networks
- Title(参考訳): 6Gと将来ネットワークにおけるAI対応スペクトル管理の体系的文献レビュー
- Authors: Bushra Sabir, Shuiqiao Yang, David Nguyen, Nan Wu, Alsharif Abuadbba, Hajime Suzuki, Shangqi Lai, Wei Ni, Ding Ming, Surya Nepal,
- Abstract要約: AI対応のSpectrum Managementの進歩の強化にはギャップがあります。
従来のスペクトル管理手法は、ダイナミックで複雑な要求のため、6Gでは不十分である。
発見は、重要なAISMシステムにおける未探索のAI利用などの課題を明らかにする。
- 参考スコア(独自算出の注目度): 29.38890315823053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) has advanced significantly in various domains like healthcare, finance, and cybersecurity, with successes such as DeepMind's medical imaging and Tesla's autonomous vehicles. As telecommunications transition from 5G to 6G, integrating AI is crucial for complex demands like data processing, network optimization, and security. Despite ongoing research, there's a gap in consolidating AI-enabled Spectrum Management (AISM) advancements. Traditional spectrum management methods are inadequate for 6G due to its dynamic and complex demands, making AI essential for spectrum optimization, security, and network efficiency. This study aims to address this gap by: (i) Conducting a systematic review of AISM methodologies, focusing on learning models, data handling techniques, and performance metrics. (ii) Examining security and privacy concerns related to AI and traditional network threats within AISM contexts. Using the Systematic Literature Review (SLR) methodology, we meticulously analyzed 110 primary studies to: (a) Identify AI's utility in spectrum management. (b) Develop a taxonomy of AI approaches. (c) Classify datasets and performance metrics used. (d) Detail security and privacy threats and countermeasures. Our findings reveal challenges such as under-explored AI usage in critical AISM systems, computational resource demands, transparency issues, the need for real-world datasets, imbalances in security and privacy research, and the absence of testbeds, benchmarks, and security analysis tools. Addressing these challenges is vital for maximizing AI's potential in advancing 6G technology.
- Abstract(参考訳): 人工知能(AI)は、DeepMindの医療画像やTeslaの自動運転車など、医療、金融、サイバーセキュリティといった様々な分野で大きく進歩している。
5Gから6Gへの通信の移行に伴って、データ処理やネットワーク最適化、セキュリティといった複雑な要求に対して、AIの統合は不可欠である。
進行中の研究にもかかわらず、AISM(Spectrum Management)の強化にはギャップがある。
従来のスペクトル管理方法は、ダイナミックで複雑な要求のために6Gでは不十分であり、スペクトル最適化、セキュリティ、ネットワーク効率にAIが不可欠である。
本研究は, このギャップを次のように解決することを目的としている。
i)AISM方法論の体系的レビューを行い,学習モデル,データ処理技術,パフォーマンス指標に着目した。
(II)AISMコンテキスト内のAIおよび従来のネットワーク脅威に関連するセキュリティとプライバシの懸念を検討する。
体系的文献レビュー(SLR)手法を用いて,110の初等研究を慎重に分析した。
(a)スペクトル管理におけるAIの有用性を同定する。
b)AIアプローチの分類法を開発する。
(c) 使用されるデータセットとパフォーマンスメトリクスを分類する。
(d) セキュリティ及びプライバシーの脅威及び対策の詳細。
我々の研究結果は、重要なAISMシステムにおけるAIの使用不足、計算リソースの要求、透明性の問題、現実のデータセットの必要性、セキュリティとプライバシ研究の不均衡、テストベッド、ベンチマーク、セキュリティ分析ツールの欠如といった課題を明らかにした。
これらの課題に対処することは、AIが6G技術を進化させる可能性の最大化に不可欠である。
関連論文リスト
- Integrative Approaches in Cybersecurity and AI [0.0]
組織がデータを保護し、分析し、活用する方法に革命をもたらす可能性を秘めている重要なトレンド、課題、将来の方向性を特定します。
私たちの発見は、AI駆動の自動化、リアルタイム脅威検出、高度なデータ分析を取り入れて、よりレジリエンスで適応的なセキュリティアーキテクチャを構築するための、学際的な戦略の必要性を強調しています。
論文 参考訳(メタデータ) (2024-08-12T01:37:06Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T02:18:21Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
本稿では,地球科学とリモートセンシング分野におけるAIセキュリティの現況を概観する。
敵攻撃、バックドア攻撃、連合学習、不確実性、説明可能性の5つの重要な側面をカバーしている。
著者の知識を最大限に活用するために,本稿は,地球科学とRSコミュニティにおけるAIセキュリティ関連研究の体系的レビューを行う最初の試みである。
論文 参考訳(メタデータ) (2022-12-19T10:54:51Z) - A Comprehensive Study on Artificial Intelligence Algorithms to Implement
Safety Using Communication Technologies [1.2710179245406195]
この研究は、異なるコミュニケーション技術を使用するAIベースの安全ソリューションの現状を包括的に把握することを目的としている。
その結果、安全を実装するためにAIとコミュニケーションを最も活用しているのは自動車ドメインであることが示された。
携帯電話以外の通信技術の利用が主流であるが、2020年からは5G技術の展開に伴い、携帯電話通信の利用が急速に増加する傾向が観察されている。
論文 参考訳(メタデータ) (2022-05-17T14:38:38Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。