論文の概要: Improved Quantum Power Method and Numerical Integration Using Quantum Singular Value Transformation
- arxiv url: http://arxiv.org/abs/2407.11744v1
- Date: Tue, 16 Jul 2024 14:11:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:42:40.511753
- Title: Improved Quantum Power Method and Numerical Integration Using Quantum Singular Value Transformation
- Title(参考訳): 量子特異値変換を用いた量子パワー法と数値積分法の改良
- Authors: Nhat A. Nghiem, Hiroki Sukeno, Shuyu Zhang, Tzu-Chieh Wei,
- Abstract要約: 最初に、QSVTフレームワークが最近導入された量子パワー法を加速できることを示し、実行時間を大幅に改善した。
矩形法などいくつかの基本数値積分手法をQSVTフレームワークに組み込んだ結果,グリッドのサイズや点数に対する高速化が得られた。
- 参考スコア(独自算出の注目度): 1.0687104237121408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum singular value transformation (QSVT) is a framework that has been shown to unify many primitives in quantum algorithms. In this work, we leverage the QSVT framework in two directions. We first show that the QSVT framework can accelerate one recently introduced quantum power method, which substantially improves its running time. Additionally, we incorporate several elementary numerical integration techniques, such as the rectangular method, Monte Carlo method, and quadrature method, into the QSVT framework, which results in polynomial speedup with respect to the size or the number of points of the grid. Our results thus provide further examples to demonstrate the potential of the QSVT and how it may enhance quantum algorithmic tasks.
- Abstract(参考訳): 量子特異値変換(QSVT)は、量子アルゴリズムにおいて多くのプリミティブを統合することが示されているフレームワークである。
本研究では,QSVTフレームワークを2つの方向に活用する。
最初に、QSVTフレームワークが最近導入された量子パワー法を加速できることを示し、実行時間を大幅に改善した。
さらに、直方体法、モンテカルロ法、二次法などの基本的な数値積分手法をQSVTフレームワークに組み込み、格子の大きさや点数に関して多項式の高速化をもたらす。
そこで本研究では,QSVTのポテンシャルと,量子アルゴリズムタスクの強化について,さらに例を挙げる。
関連論文リスト
- Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
変分量子コンパイル(VQC)法は、高精度を維持しつつゲートコストを低減するために変分最適化を用いる。
1次元におけるシステムサイズと精度の両面で、我々のアプローチが最先端のコンパイル結果を上回ることが示されている(1$D)。
VQCを2次元(2次元)ストリップに準1次元処理で拡張し、標準的なトロッタライズ法よりも大きな資源優位性を示す。
論文 参考訳(メタデータ) (2024-09-24T18:00:00Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
VQCを用いた量子チップ上の関数の適合を支援するために,RTQEM(Real Time Quantum Error Mitigation)アルゴリズムを定義する。
我々のRTQEMルーチンは、損失関数の破損を減らすことにより、VQCのトレーニング性を向上させることができる。
論文 参考訳(メタデータ) (2023-11-09T19:00:01Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
量子特異値変換は効率的に「等化」できることを示す。
逆多項式精度では、同じ問題がBQP完全となることを示す。
また、この分位化手法が中心量子PCPの進展にどう役立つかについても論じる。
論文 参考訳(メタデータ) (2021-11-17T12:50:13Z) - A Grand Unification of Quantum Algorithms [0.0]
最近、多くの量子アルゴリズムが量子特異値変換(quantum singular value transformation)と呼ばれる手法で結合された。
本稿では,まず量子信号処理を量子固有値変換に一般化する方法について解説する。
次に、QSVTを用いて、探索、位相推定、ハミルトニアンシミュレーションのための直感的な量子アルゴリズムを構築する。
論文 参考訳(メタデータ) (2021-05-06T17:46:33Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
変分量子アルゴリズム(VQA)は、短期量子コンピュータの効率的な利用を約束する。
量子状態学習のためのVQAを最適に訓練する方法を示す。
量子機械学習におけるガウスカーネルの応用を提案する。
論文 参考訳(メタデータ) (2021-04-29T17:54:59Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
変分量子固有解法(VQE)は、ハミルトニアンの固有値と固有値を見つけるためにハイブリッド量子古典計算法を用いる方法である。
VQEは、様々な小さな分子に対する電子的シュリンガー方程式の解法に成功している。
現代の量子コンピュータは、現在利用可能なアンサツェを用いて生成されたディープ量子回路を実行することができない。
論文 参考訳(メタデータ) (2021-03-15T16:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。