論文の概要: Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
- arxiv url: http://arxiv.org/abs/2407.12857v2
- Date: Tue, 01 Oct 2024 17:13:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:31:55.958297
- Title: Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
- Title(参考訳): 紙SEAにおける自動ピアレビュー:標準化・評価・分析
- Authors: Jianxiang Yu, Zichen Ding, Jiaqi Tan, Kangyang Luo, Zhenmin Weng, Chenghua Gong, Long Zeng, Renjing Cui, Chengcheng Han, Qiushi Sun, Zhiyong Wu, Yunshi Lan, Xiang Li,
- Abstract要約: 自動レビューフレームワークSEAを導入する。
標準、評価、分析の3つのモジュールから構成される。
著者が論文を改善するための貴重な洞察を得られる。
- 参考スコア(独自算出の注目度): 20.557559841180733
- License:
- Abstract: In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.
- Abstract(参考訳): 近年、科学論文の急速な増加は、従来のレビューメカニズムを圧倒し、出版物の質が変化している。
既存の手法では、自動科学的レビューのためのLarge Language Models (LLMs) の機能を探っているが、生成された内容はしばしば汎用的あるいは部分的である。
上記の問題に対処するために、自動紙レビューフレームワークSEAを紹介します。
標準化、評価、分析の3つのモジュールから構成されており、それぞれSEA-S、SEA-E、SEA-Aのモデルで表される。
当初、SEA-SはGPT-4のデータ標準化機能を蒸留し、複数のレビューを統合する。
そして、SEA-Eは標準化されたデータを使って微調整を行い、構築的なレビューを生成する。
最後に、SEA-Aは、紙の内容とレビューの整合性を評価するために、ミスマッチスコアと呼ばれる新しい評価指標を導入した。
さらに,一貫性を高めるための自己補正戦略を設計する。
8つの会場から収集されたデータセットに関する大規模な実験結果から、SEAは著者が論文を改善する上で貴重な洞察を得られることを示している。
関連論文リスト
- RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and
Improvement of Large Language Models [4.953092503184905]
この研究は、LLM(Large Language Models)生成したテキストの一貫性を評価し改善する自動化フレームワークであるDCRを提案する。
本稿では,DCEからの出力を解釈可能な数値スコアに変換する自動計量変換器(AMC)を提案する。
また,本手法は出力不整合の90%近くを著しく低減し,効果的な幻覚緩和の可能性を示唆している。
論文 参考訳(メタデータ) (2024-01-04T08:34:16Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large
Language Models on Sequence to Sequence Tasks [9.801767683867125]
我々は,3つのNLPベンチマークの予備的およびハイブリッドな評価を,自動評価と人的評価の両方を用いて提供する。
ChatGPTは、ほとんどのメトリクスにおいて、人間のレビュアーによって、他の人気のあるモデルよりも一貫して優れています。
また、人間のレビュアーは、最高のモデルの出力よりも金の基準を格段に悪く評価し、多くの人気のあるベンチマークの品質が劣っていることを示している。
論文 参考訳(メタデータ) (2023-10-20T20:17:09Z) - Automated Metrics for Medical Multi-Document Summarization Disagree with
Human Evaluations [22.563596069176047]
自動要約評価指標が生成した要約の語彙的特徴とどのように相関するかを分析する。
自動測定を行うだけでなく、人間によって評価された品質の側面を捉えることができず、多くの場合、これらの測定によって生成されるシステムランキングは、人間のアノテーションによるランキングと反相関している。
論文 参考訳(メタデータ) (2023-05-23T05:00:59Z) - News Summarization and Evaluation in the Era of GPT-3 [73.48220043216087]
GPT-3は,大規模な要約データセット上で訓練された微調整モデルと比較する。
我々は,GPT-3サマリーが圧倒的に好まれるだけでなく,タスク記述のみを用いることで,現実性に乏しいようなデータセット固有の問題に悩まされることも示している。
論文 参考訳(メタデータ) (2022-09-26T01:04:52Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z) - Re-evaluating Evaluation in Text Summarization [77.4601291738445]
トップスコアシステム出力を用いたテキスト要約の評価手法を再評価する。
古いデータセットにおける評価指標に関する結論は、現代データセットやシステムに必ずしも当てはまらない。
論文 参考訳(メタデータ) (2020-10-14T13:58:53Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
質問回答(QA)を用いて要約内容の質を評価する指標を提案する。
提案指標であるQAEvalの分析を通じて,QAに基づくメトリクスの実験的メリットを実証する。
論文 参考訳(メタデータ) (2020-10-01T15:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。