論文の概要: VeriQR: A Robustness Verification Tool for Quantum Machine Learning Models
- arxiv url: http://arxiv.org/abs/2407.13533v1
- Date: Thu, 18 Jul 2024 14:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:00:55.983187
- Title: VeriQR: A Robustness Verification Tool for Quantum Machine Learning Models
- Title(参考訳): VeriQR: 量子機械学習モデルのためのロバスト性検証ツール
- Authors: Yanling Lin, Ji Guan, Wang Fang, Mingsheng Ying, Zhaofeng Su,
- Abstract要約: 適応ノイズ攻撃は量子機械学習(QML)モデルに重大な脅威をもたらす。
textitVeriQRは,QMLモデルの堅牢性を形式的に検証し,改善する目的で設計された,最初のツールである。
textitVeriQRは、局所的およびグローバルな堅牢性検証のための正確な(音と完全)アルゴリズムをサポートする。
- 参考スコア(独自算出の注目度): 3.0148998227353294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial noise attacks present a significant threat to quantum machine learning (QML) models, similar to their classical counterparts. This is especially true in the current Noisy Intermediate-Scale Quantum era, where noise is unavoidable. Therefore, it is essential to ensure the robustness of QML models before their deployment. To address this challenge, we introduce \textit{VeriQR}, the first tool designed specifically for formally verifying and improving the robustness of QML models, to the best of our knowledge. This tool mimics real-world quantum hardware's noisy impacts by incorporating random noise to formally validate a QML model's robustness. \textit{VeriQR} supports exact (sound and complete) algorithms for both local and global robustness verification. For enhanced efficiency, it implements an under-approximate (complete) algorithm and a tensor network-based algorithm to verify local and global robustness, respectively. As a formal verification tool, \textit{VeriQR} can detect adversarial examples and utilize them for further analysis and to enhance the local robustness through adversarial training, as demonstrated by experiments on real-world quantum machine learning models. Moreover, it permits users to incorporate customized noise. Based on this feature, we assess \textit{VeriQR} using various real-world examples, and experimental outcomes confirm that the addition of specific quantum noise can enhance the global robustness of QML models. These processes are made accessible through a user-friendly graphical interface provided by \textit{VeriQR}, catering to general users without requiring a deep understanding of the counter-intuitive probabilistic nature of quantum computing.
- Abstract(参考訳): 敵対的ノイズアタックは、量子機械学習(QML)モデルに重大な脅威をもたらす。
これは、ノイズが避けられない現在のノイズ中間スケール量子時代において特に当てはまる。
したがって、デプロイ前にQMLモデルの堅牢性を保証することが不可欠である。
この課題に対処するために、QMLモデルの堅牢性を正式に検証し改善するために設計された最初のツールである \textit{VeriQR} を、私たちの知識の最大限に活用する。
このツールは、QMLモデルの堅牢性を正式に検証するためにランダムノイズを取り入れることで、現実世界の量子ハードウェアのノイズの影響を模倣する。
\textit{VeriQR} は、局所的および大域的堅牢性検証のための正確な(音と完全)アルゴリズムをサポートする。
効率を向上させるために、局所的および大域的ロバスト性を検証するために、アンダー近似(完全)アルゴリズムとテンソルネットワークベースのアルゴリズムを実装している。
公式な検証ツールとして、現実世界の量子機械学習モデルの実験で実証されたように、 \textit{VeriQR} は敵のサンプルを検出し、さらなる分析に利用し、敵のトレーニングを通じて局所的なロバスト性を高めることができる。
さらに、ユーザがカスタマイズされたノイズを組み込むこともできる。
この特徴に基づき,実世界の実例を用いて \textit{VeriQR} の評価を行い,量子ノイズの付加がQMLモデルの大域的ロバスト性を高めることを示す実験結果を得た。
これらのプロセスは、量子コンピューティングの反直観的確率的性質の深い理解を必要とせず、一般ユーザ向けに提供されたユーザフレンドリーなグラフィカルインターフェースを通じてアクセスすることができる。
関連論文リスト
- Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
厳密なベンチマーク手法を用いて、進捗を追跡し、QMLアルゴリズムのスケーリングにおける課題を特定する。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに耐性があることがわかった。
論文 参考訳(メタデータ) (2024-03-27T15:05:55Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
量子化は、限られたリソースを持つデバイスにディープニューラルネットワーク(DNN)をデプロイする上で不可欠なテクニックである。
我々は、ImageNet上の様々なノイズ(障害攻撃、自然破壊、系統的なノイズ)に対する量子化モデルのロバスト性について、徹底的に評価した。
我々の研究は、モデルとその実世界のシナリオにおける展開の堅牢な定量化を推し進めることに貢献している。
論文 参考訳(メタデータ) (2023-08-04T14:37:12Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind Quantum Computing (BQC) は、クライアントのプライバシを保護するセキュアな量子計算手法である。
資源グラフ状態が敵のシナリオで正確に準備されているかどうかを検証することは重要である。
本稿では,任意の局所次元を持つ任意のグラフ状態を検証するための,堅牢で効率的なプロトコルを提案する。
論文 参考訳(メタデータ) (2023-05-18T06:24:45Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
本稿では,ターゲット装置の雑音レベルに適応する適応KIKというQEM手法を提案する。
この手法の実装は実験的にシンプルであり、トモグラフィ情報や機械学習の段階は含まない。
我々は、IBM量子コンピュータと数値シミュレーションを用いて、我々の研究結果を実証した。
論文 参考訳(メタデータ) (2023-03-09T02:50:53Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
本論文では,未知のノイズ統計による信号を堅牢に検出する一般化最大確率(ML)推定器を考案する。
実際には、システムノイズに関する統計的な知識はほとんどなく、場合によっては非ガウス的であり、衝動的であり、分析不可能である。
我々のフレームワークは、ノイズサンプルのみを必要とする教師なしの学習アプローチによって駆動される。
論文 参考訳(メタデータ) (2021-01-21T04:48:15Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。