User-Creator Feature Polarization in Recommender Systems with Dual Influence
- URL: http://arxiv.org/abs/2407.14094v2
- Date: Thu, 31 Oct 2024 21:26:01 GMT
- Title: User-Creator Feature Polarization in Recommender Systems with Dual Influence
- Authors: Tao Lin, Kun Jin, Andrew Estornell, Xiaoying Zhang, Yiling Chen, Yang Liu,
- Abstract summary: recommender systems serve the dual purpose of presenting relevant content to users and helping content creators reach their target audience.
We define a model, called user-creator feature dynamics, to capture the dual influence of recommender systems.
We investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems.
- Score: 19.506536850645343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems serve the dual purpose of presenting relevant content to users and helping content creators reach their target audience. The dual nature of these systems naturally influences both users and creators: users' preferences are affected by the items they are recommended, while creators may be incentivized to alter their content to attract more users. We define a model, called user-creator feature dynamics, to capture the dual influence of recommender systems. We prove that a recommender system with dual influence is guaranteed to polarize, causing diversity loss in the system. We then investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems. Unexpectedly, we find that common diversity-promoting approaches do not work in the presence of dual influence, while relevancy-optimizing methods like top-$k$ truncation can prevent polarization and improve diversity of the system.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Debiased Contrastive Representation Learning for Mitigating Dual Biases in Recommender Systems [20.559573838679853]
In recommender systems, popularity and conformity biases undermine recommender effectiveness.
We build a causal graph to address both biases and describe the abstract data generation mechanism.
Then, we use it as a guide to develop a novel Debiased Contrastive Learning framework for Mitigating Dual Biases.
arXiv Detail & Related papers (2024-08-19T02:12:40Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
We propose a novel recommendation strategy that combines relevance and diversity by a copula function.
We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system.
Our strategy outperforms several state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-07T13:48:24Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
In this study, we perform system-side user welfare optimization under a competitive game setting among content creators.
We propose an algorithmic solution for the platform, which dynamically computes a sequence of weights for each user based on their satisfaction of the recommended content.
These weights are then utilized to design mechanisms that adjust the recommendation policy or the post-recommendation rewards, thereby influencing creators' content production strategies.
arXiv Detail & Related papers (2024-04-28T21:09:52Z) - The Impact of Recommendation Systems on Opinion Dynamics: Microscopic
versus Macroscopic Effects [1.4180331276028664]
We study the impact of recommendation systems on users, both from a microscopic (i.e., at the level of individual users) and a macroscopic perspective.
Our analysis reveals that shifts in the opinions of individual users do not always align with shifts in the opinion distribution of the population.
arXiv Detail & Related papers (2023-09-16T11:44:51Z) - User-Controllable Recommendation via Counterfactual Retrospective and
Prospective Explanations [96.45414741693119]
We present a user-controllable recommender system that seamlessly integrates explainability and controllability.
By providing both retrospective and prospective explanations through counterfactual reasoning, users can customize their control over the system.
arXiv Detail & Related papers (2023-08-02T01:13:36Z) - Graph Exploration Matters: Improving both individual-level and
system-level diversity in WeChat Feed Recommender [21.0013026365164]
Individual-level diversity and system-level diversity are both important for industrial recommender systems.
We implement and deploy the combined system in WeChat App's Top Stories used by hundreds of millions of users.
arXiv Detail & Related papers (2023-05-29T19:25:32Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Modeling and Counteracting Exposure Bias in Recommender Systems [0.0]
We study the bias inherent in widely used recommendation strategies such as matrix factorization.
We propose new debiasing strategies for recommender systems.
Our results show that recommender systems are biased and depend on the prior exposure of the user.
arXiv Detail & Related papers (2020-01-01T00:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.