LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
- URL: http://arxiv.org/abs/2407.16205v4
- Date: Mon, 17 Feb 2025 09:00:28 GMT
- Title: LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
- Authors: Shi Lin, Hongming Yang, Rongchang Li, Xun Wang, Changting Lin, Wenpeng Xing, Meng Han,
- Abstract summary: Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
- Score: 21.02295266675853
- License:
- Abstract: The rapid development of Large Language Models (LLMs) has brought significant advancements across various tasks. However, despite these achievements, LLMs still exhibit inherent safety vulnerabilities, especially when confronted with jailbreak attacks. Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization, which lead to low attack success rate (ASR) and attack efficiency (AE). In this work, we propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content, revealing their underlying safety vulnerabilities during complex reasoning process. We conduct comprehensive experiments on ABJ across various open-source and closed-source LLMs. In particular, ABJ achieves high ASR (82.1% on GPT-4o-2024-11-20) with exceptional AE among all target LLMs, showcasing its remarkable attack effectiveness, transferability, and efficiency. Our findings underscore the urgent need to prioritize and improve the safety of LLMs to mitigate the risks of misuse.
Related papers
- You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
We study the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies.
We find that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously.
arXiv Detail & Related papers (2025-01-21T15:24:29Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
Existing jailbreak attacks are primarily based on opaque optimization techniques and gradient search methods.
We propose LLM-Virus, a jailbreak attack method based on evolutionary algorithm, termed evolutionary jailbreak.
Our results show that LLM-Virus achieves competitive or even superior performance compared to existing attack methods.
arXiv Detail & Related papers (2024-12-28T07:48:57Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to the real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.
This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
We introduce a novel jailbreak method, which targets the external properties of LLMs.
By injecting jailbreak information into user prompts, SIJ successfully induces the model to output harmful content.
We propose a simple defense method called Self-Reminder-Key to counter SIJ.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
Jailbreak attacks manipulate large language models into generating harmful content.
Jailbreak Antidote enables real-time adjustment of safety preferences by manipulating a sparse subset of the model's internal states.
Our analysis reveals that safety-related information in LLMs is sparsely distributed.
arXiv Detail & Related papers (2024-10-03T08:34:17Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.