Adiabatic Dynamics of Entanglement
- URL: http://arxiv.org/abs/2407.18301v2
- Date: Tue, 03 Jun 2025 22:29:27 GMT
- Title: Adiabatic Dynamics of Entanglement
- Authors: Einar Gabbassov, Achim Kempf,
- Abstract summary: During adiabatic evolution, changes of entanglement can be traced to avoided energy level crossings.<n>The efficiency of this weaving of entanglement depends on the narrowness of the avoided level crossings.<n>The amount of entanglement involved in an adiabatic quantum computation can be related to the ruggedness of its energy landscape.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that, during adiabatic evolution, any changes of entanglement can be traced to a succession of avoided energy level crossings at which eigenvalues swap their eigenvectors. These swaps of eigenvectors weave the entanglement in multipartite systems. The efficiency of this weaving of entanglement depends on the narrowness of the avoided level crossings and it is, therefore, constraining the speed of adiabatic evolution. Applied to adiabatic quantum computation, these results directly relate the adiabatic quantum computation speed to its utilization of the resource of entanglement. Further, the amount of entanglement involved in an adiabatic quantum computation can be related to the ruggedness of its energy landscape. We therefore obtain new tools for exploring the origins of quantum advantage in adiabatic quantum computation.
Related papers
- Quantum coherence and counterdiabatic quantum computing [0.0]
Counterdiabatic driving emerges as a valuable technique for implementing shortcuts to adiabaticity protocols.<n>This work investigates the production of quantum coherence in adiabatic evolution accelerated by counterdiabatic driving.
arXiv Detail & Related papers (2025-04-24T15:12:49Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy scaling under quantum entanglement jumps.
We show that by tuning the system parameters, a measurement-induced transition occurs where the entanglement entropy changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Shortcuts for Adiabatic and Variational Algorithms in Molecular Simulation [3.5621685463862356]
We introduce shortcuts-to-adiabaticity techniques into adiabatic and variational algorithms for calculating the molecular ground state.
Our approach achieves comparable accuracy to other established ansatzes, while enhancing the potential for applications in material science, drug discovery, and molecular simulations.
arXiv Detail & Related papers (2024-07-30T16:30:22Z) - Exploring Ground States of Fermi-Hubbard Model on Honeycomb Lattices with Counterdiabaticity [2.756976915658684]
Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these processes by suppressing energy excitations.
We develop variational quantum algorithms incorporating the auxiliary counterdiabatic interactions, comparing them with digitized adiabatic algorithms.
These algorithms are then implemented on gate-based quantum circuits to explore the ground states of the Fermi-Hubbard model on honeycomb lattices.
arXiv Detail & Related papers (2024-05-15T10:05:01Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Wave-packet dynamics in non-Hermitian systems subject to complex
electric fields [0.0]
Berry phases have long been known to significantly alter the properties of periodic systems.
In non-Hermitian systems, generalizations of the Berry connection have been proposed and shown to have novel effects on dynamics and transport.
We show that the non-Hermiticities of both the band Hamiltonian and the external potential give rise to anomalous weight rate and velocity terms.
arXiv Detail & Related papers (2024-02-02T11:06:46Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator [0.0]
We study the time-dependent behaviour of quantum correlations of a system governed by out-of-equilibrium dynamics.
Next, we study a specific case, where the system exhibits chaotic behaviour by computing the quantum Lyapunov from the time-dependent behaviour of OTOC.
arXiv Detail & Related papers (2022-10-03T18:00:02Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Quantum annealing with twisted fields [0.0]
We propose a method for suppressing the effects of decoherence and non-adiabatic transition.
Our results can pave the way to a new approach for realizing practical quantum annealing.
arXiv Detail & Related papers (2021-11-30T11:00:44Z) - Dynamics of entropy and information of time-dependent quantum systems:
exact results [0.0]
Dynamical aspects of information-theoretic and entropic measures of quantum systems are studied.
We show that for the time-dependent harmonic oscillator, as well as for the charged particle in certain time-varying electromagnetic fields, the increase of the entropy and dynamics of the Fisher information can be directly described and related.
We detail the behavior of quantum quenches for the case of mutually non-interacting non-relativistic fermions in a harmonic trap.
arXiv Detail & Related papers (2021-08-02T15:22:32Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Transport in boundary-driven quantum spin systems: One-way street for
the energy current [0.0]
We study transport properties in boundary-driven asymmetric quantum spin chains given by $mathitXXZ$ and $mathitXXX$ Heisenberg models.
Our results, involving nontrivial properties of the energy flow, shall interest researchers working on the control and manipulation of quantum transport.
arXiv Detail & Related papers (2020-08-21T12:33:49Z) - A measure for adiabatic contributions to quantum transitions [0.0]
We construct a measure for the adiabatic contribution to quantum transitions in an arbitrary basis.
We demonstrate that the measure can be applied to material or molecular simulations using time-dependent density functional theory.
arXiv Detail & Related papers (2020-07-21T11:02:34Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum particle motion on the surface of a helicoid in the presence of
harmonic oscillator [0.0]
We study the consequences of a helicoidal geometry in the Schr"odinger equation dealing with an anisotropic mass tensor.
We determine the eigenfunctions in terms of Confluent Heun Functions and compute the respective energy levels.
arXiv Detail & Related papers (2020-05-03T23:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.