Quantum landscape tomography for efficient single-gate optimization on quantum computers
- URL: http://arxiv.org/abs/2407.18305v2
- Date: Mon, 28 Oct 2024 08:45:01 GMT
- Title: Quantum landscape tomography for efficient single-gate optimization on quantum computers
- Authors: Matan Ben-Dov, Itai Arad, Emanuele G. Dalla Torre,
- Abstract summary: Circuit optimization is a fundamental task for practical applications of near-term quantum computers.
We propose a process called quantum landscape tomography to characterize the influence of individual gates on the entire circuit.
Our findings highlight the potential of quantum landscape tomography to enhance circuit optimization in near-term quantum computing applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Circuit optimization is a fundamental task for practical applications of near-term quantum computers. In this work we address this challenge through the powerful lenses of tensor network theory. Our approach involves the full characterization of the influence of individual gates on the entire circuit, a process we call quantum landscape tomography. We derive the necessary and sufficient requirements of this process and propose two implementations, respectively based on 2-unitary design and Clifford tableaux. The latter implementation strikes a convenient balance between the number of shots and the number of circuits needed for the tomography. Numerical simulations based on a realistic noise model demonstrate the advantage of our approach with respect to both gradient-free and gradient-based methods. Overall, our findings highlight the potential of quantum landscape tomography to enhance circuit optimization in near-term quantum computing applications.
Related papers
- Optimal overlapping tomography [0.814548016007804]
Overlapping tomography is a scheme which allows to obtain all the information contained in specific subsystems of quantum systems.
We present protocols for optimal overlapping tomography with respect to different figures of merit.
Results will find applications in learning noise and interaction patterns in quantum computers as well as characterising fermionic systems in quantum chemistry.
arXiv Detail & Related papers (2024-08-11T08:59:08Z) - Surrogate-guided optimization in quantum networks [0.9148747049384086]
We propose an optimization algorithm to improve the design and performance of quantum communication networks.
Our framework allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
arXiv Detail & Related papers (2024-07-24T11:55:18Z) - Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science.
One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data.
arXiv Detail & Related papers (2024-04-29T16:28:14Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Universal compilation for quantum state preparation and tomography [0.0]
We propose a universal compilation-based variational algorithm for the preparation and tomography of quantum states in low-depth quantum circuits.
We evaluate the performance of various unitary topologies and the trainability of different unitarys for getting high efficiency.
arXiv Detail & Related papers (2022-04-25T13:10:33Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.