論文の概要: Downlink CCM Estimation via Representation Learning with Graph Regularization
- arxiv url: http://arxiv.org/abs/2407.18865v2
- Date: Sun, 1 Sep 2024 06:39:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:11:28.202389
- Title: Downlink CCM Estimation via Representation Learning with Graph Regularization
- Title(参考訳): グラフ正規化を用いた表現学習によるダウンリンクCCM推定
- Authors: Melih Can Zerin, Elif Vural, Ali Özgür Yılmaz,
- Abstract要約: 本稿では,UL CCM を DL CCM にマッピング関数でマッピングする環境について考察する。
推定問題の解法として表現学習アルゴリズムを提案する。
提案アルゴリズムは3つの誤差指標でベンチマーク手法を超越する。
- 参考スコア(独自算出の注目度): 1.740992908651449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an algorithm for downlink (DL) channel covariance matrix (CCM) estimation for frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) communication systems with base station (BS) possessing a uniform linear array (ULA) antenna structure. We consider a setting where the UL CCM is mapped to DL CCM by a mapping function. We first present a theoretical error analysis of learning a nonlinear embedding by constructing a mapping function, which points to the importance of the Lipschitz regularity of the mapping function for achieving high estimation performance. Then, based on the theoretical ground, we propose a representation learning algorithm as a solution for the estimation problem, where Gaussian RBF kernel interpolators are chosen to map UL CCMs to their DL counterparts. The proposed algorithm is based on the optimization of an objective function that fits a regression model between the DL CCM and UL CCM samples in the training dataset and preserves the local geometric structure of the data in the UL CCM space, while explicitly regulating the Lipschitz continuity of the mapping function in light of our theoretical findings. The proposed algorithm surpasses benchmark methods in terms of three error metrics as shown by simulations.
- Abstract(参考訳): 本稿では,一様線形アレイ (ULA) アンテナ構造を有する基地局 (BS) を用いたFDD(Multiple-Input multiple-output) 通信システムにおけるダウンリンクチャネル共分散行列 (CCM) 推定アルゴリズムを提案する。
本稿では,UL CCM を DL CCM にマッピング関数でマッピングする環境について考察する。
まず,高推定性能を実現するために,写像関数のリプシッツ正則性の重要性を示す写像関数を構築し,非線形埋め込みを学習する理論的誤差解析を行う。
そこで,この理論に基づいて,推定問題の解として表現学習アルゴリズムを提案する。そこでは,ガウス系RBFカーネル補間器を選択して,UL CCMをDLにマップする。
提案アルゴリズムは、トレーニングデータセットにおけるDL CCMとUL CCMサンプル間の回帰モデルに適合し、UL CCM空間におけるデータの局所的な幾何学的構造を保ちながら、我々の理論的な知見に基づき、マッピング関数のリプシッツ連続性を明示的に制御する目的関数の最適化に基づく。
提案アルゴリズムは,シミュレーションで示される3つの誤差指標を用いて,ベンチマーク手法を超越する。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Federated Representation Learning via Maximal Coding Rate Reduction [109.26332878050374]
本稿では,複数のクライアントに分散したデータセットから低次元表現を学習する手法を提案する。
提案手法はFLOWと呼ばれ, MCR2を選択の対象とし, その結果, クラス間判別とクラス内圧縮の両方が可能な表現が得られた。
論文 参考訳(メタデータ) (2022-10-01T15:43:51Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Accurate Discharge Coefficient Prediction of Streamlined Weirs by
Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit [2.4475596711637433]
本研究では,CFDシミュレーションに代わるデータ駆動モデリング手法を提案する。
提案した3層階層型DLアルゴリズムは,後続の2つのGRUレベルを結合した畳み込み層で構成されており,LR法とハイブリダイゼーションすることで,誤差の低減につながることがわかった。
論文 参考訳(メタデータ) (2022-04-12T01:59:36Z) - Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding
problem [7.132368785057316]
本稿では、LASSOに基づく効率的なMSC解法を用いて、辞書に基づく行列分解と正準多進分解を計算する方法を示す。
超スペクトル画像処理と化学計測の文脈における辞書に基づく行列分解と正準多進分解の計算に、LASSOに基づく効率的なMSC解法を適用する方法を示す。
論文 参考訳(メタデータ) (2021-11-24T10:32:48Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Circular-Symmetric Correlation Layer based on FFT [11.634729459989996]
連続群 $S1 times mathbbR$ 上のロト変換同変相関の形式性に基づく円対称相関層 (CCL) を提案する。
各種の認識・分類タスク・データセットに対して,CCLを組み込んだ汎用ネットワークの性能解析を行った。
論文 参考訳(メタデータ) (2021-07-26T21:06:20Z) - Piecewise linear regression and classification [0.20305676256390928]
本稿では,線形予測器を用いた多変量回帰と分類問題の解法を提案する。
本論文で記述されたアルゴリズムのpython実装は、http://cse.lab.imtlucca.it/bemporad/parcで利用可能である。
論文 参考訳(メタデータ) (2021-03-10T17:07:57Z) - FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for
Optical Flow Estimation [72.41370576242116]
フレーム対からの光フロー推定のための半教師付き特徴ピラミッド相関・残留再構成ネットワーク(FPCR-Net)を提案する。
ピラミッド相関マッピングと残留再構成の2つの主要なモジュールで構成されている。
実験結果から,提案手法は,平均終点誤差 (AEE) に対して0.80, 1.15, 0.10の改善を達成し,最先端性能を実現していることがわかった。
論文 参考訳(メタデータ) (2020-01-17T07:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。