論文の概要: FH-DRL: Exponential-Hyperbolic Frontier Heuristics with DRL for accelerated Exploration in Unknown Environments
- arxiv url: http://arxiv.org/abs/2407.18892v2
- Date: Thu, 13 Feb 2025 02:46:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:23.740935
- Title: FH-DRL: Exponential-Hyperbolic Frontier Heuristics with DRL for accelerated Exploration in Unknown Environments
- Title(参考訳): FH-DRL:未知環境における高速探査のためのDRLを用いた指数双曲フロンティアヒューリスティックス
- Authors: Seunghyeop Nam, Tuan Anh Nguyen, Eunmi Choi, Dugki Min,
- Abstract要約: 本稿では、FH-DRLという、フロンティア検出のためのカスタマイズ可能な機能と、連続的かつ高速なローカルナビゲーションのためのTwin Delayed DDPG(TD3)エージェントを統合する新しいフレームワークを紹介する。
FH-DRLを複数のシミュレーションおよび実世界のシナリオで徹底的に評価し,旅行距離と完了時間の明確な改善を実証した。
その結果、FH-DRLは、大規模または部分的に知られている環境におけるフロンティアベースの探索の効率的で一般的なアプローチであることがわかった。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License:
- Abstract: Autonomous robot exploration in large-scale or cluttered environments remains a central challenge in intelligent vehicle applications, where partial or absent prior maps constrain reliable navigation. This paper introduces FH-DRL, a novel framework that integrates a customizable heuristic function for frontier detection with a Twin Delayed DDPG (TD3) agent for continuous, high-speed local navigation. The proposed heuristic relies on an exponential-hyperbolic distance score, which balances immediate proximity against long-range exploration gains, and an occupancy-based stochastic measure, accounting for environmental openness and obstacle densities in real time. By ranking frontiers using these adaptive metrics, FH-DRL targets highly informative yet tractable waypoints, thereby minimizing redundant paths and total exploration time. We thoroughly evaluate FH-DRL across multiple simulated and real-world scenarios, demonstrating clear improvements in travel distance and completion time over frontier-only or purely DRL-based exploration. In structured corridor layouts and maze-like topologies, our architecture consistently outperforms standard methods such as Nearest Frontier, Cognet Frontier Exploration, and Goal Driven Autonomous Exploration. Real-world tests with a Turtlebot3 platform further confirm robust adaptation to previously unseen or cluttered indoor spaces. The results highlight FH-DRL as an efficient and generalizable approach for frontier-based exploration in large or partially known environments, offering a promising direction for various autonomous driving, industrial, and service robotics tasks.
- Abstract(参考訳): 大規模または散在した環境における自律ロボットの探索は、部分的または欠落した事前マップが信頼性の高いナビゲーションを制限しているインテリジェントな車両アプリケーションにおいて、依然として中心的な課題である。
本稿では、フロンティア検出のためのカスタマイズ可能なヒューリスティック関数と、連続的かつ高速なローカルナビゲーションのためのTwin Delayed DDPG(TD3)エージェントを統合する新しいフレームワークであるFH-DRLを紹介する。
提案したヒューリスティックは、遠距離探査利得と即時近接する指数的双曲的距離スコアと、環境開放性と障害物密度をリアルタイムに考慮した占有に基づく確率尺度に依存している。
これらの適応的指標を用いてフロンティアをランク付けすることで、FH-DRLは高度に情報に富むが、難解な経路を目標とし、冗長な経路と全探査時間を最小化する。
我々はFH-DRLを複数のシミュレーションおよび実世界のシナリオで徹底的に評価し、フロンティアのみまたは純粋にDRLに基づく探索よりも旅行距離と完了時間を明確に改善した。
構造化された廊下レイアウトと迷路のようなトポロジでは、私たちのアーキテクチャは、Nearest Frontier、Cagnet Frontier Exploration、Goal Driven Self Explorationといった標準メソッドよりも一貫して優れています。
Turtlebot3プラットフォームを用いた実世界のテストでは、以前は見えなかった、あるいは散らかった屋内空間へのロバストな適応がさらに確認された。
その結果、FH-DRLは、大規模または部分的に知られている環境におけるフロンティアベースの探索のための効率的で一般化可能なアプローチであり、様々な自動運転、産業、サービスロボティクスのタスクに有望な方向性を提供する。
関連論文リスト
- Deep-Sea A*+: An Advanced Path Planning Method Integrating Enhanced A* and Dynamic Window Approach for Autonomous Underwater Vehicles [1.3807821497779342]
深海環境における極度の環境は、水中での作戦に重大な課題をもたらす。
改良されたA*アルゴリズムと動的ウィンドウアプローチ(DWA)を統合した高度な経路計画手法を提案する。
提案手法は,経路の滑らかさ,障害物回避,リアルタイム性能の観点から,従来のA*アルゴリズムを超越した手法である。
論文 参考訳(メタデータ) (2024-10-22T07:29:05Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
本研究では,コミュニケーションが限られ,位置情報がない未知の環境での効率的なマルチロボット探索のための新しいハイブリッドアルゴリズムを提案する。
連続した目標情報なしでシナリオに合うように、ローカルなベストとグローバルなベストポジションを再定義する。
提示された研究は、限られた情報と通信能力を持つシナリオにおけるマルチロボット探索の強化を約束している。
論文 参考訳(メタデータ) (2023-11-28T17:05:25Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Reinforcement Learning with Frontier-Based Exploration via Autonomous
Environment [0.0]
この研究は、ExploreORBとして知られる既存のVisual-Graph SLAMと強化学習を組み合わせたものである。
提案アルゴリズムは、フロンティアの探索プロセスを最適化し、より正確な地図を作成することにより、ExploreORBの効率と精度を向上させることを目的としている。
論文 参考訳(メタデータ) (2023-07-14T12:19:46Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Rule-Based Reinforcement Learning for Efficient Robot Navigation with
Space Reduction [8.279526727422288]
本稿では,強化学習(RL)技術を用いた効率的なナビゲーションに焦点を当てた。
軌道を縮小するために減速ルールを採用し、冗長な探査空間を効果的に削減します。
ヘックスグリッド環境における実際のロボットナビゲーション問題に対する実験は、RuRLが航法性能を向上させることを実証している。
論文 参考訳(メタデータ) (2021-04-15T07:40:27Z) - Sparse Reward Exploration via Novelty Search and Emitters [55.41644538483948]
本稿では,SparsE Reward Exploration via Novelty and Emitters (SERENE)アルゴリズムを提案する。
SERENEは、探索空間の探索と報酬の搾取を2つの交互プロセスに分けている。
メタスケジューラは、2つのプロセス間の交互にグローバルな計算予算を割り当てる。
論文 参考訳(メタデータ) (2021-02-05T12:34:54Z) - Autonomous UAV Exploration of Dynamic Environments via Incremental
Sampling and Probabilistic Roadmap [0.3867363075280543]
インクリメンタルサンプリングと確率的ロードマップ(PRM)を用いた未知環境探索のための新しい動的探索プランナ(DEP)を提案する。
本手法は, 動的環境を安全に探索し, 探索時間, 経路長, 計算時間でベンチマークプランナーより優れている。
論文 参考訳(メタデータ) (2020-10-14T22:52:37Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。