論文の概要: Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
- arxiv url: http://arxiv.org/abs/2407.18950v4
- Date: Mon, 09 Jun 2025 13:12:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:08.806173
- Title: Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
- Title(参考訳): Kantの立場から見た人工知能判断の不明瞭性
- Authors: Jongwoo Seo,
- Abstract要約: 本稿では, カントの判断理論のレンズによるAI判断の不説明性について検討する。
カントの4つの論理形式-量、品質、関係、モダリティ-に基づいて、この研究はAIの不確実性と呼ばれるものを特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kant's Critique of Pure Reason, a major contribution to the history of epistemology, proposes a table of categories to elucidate the structure of the a priori principles underlying human judgment. Artificial intelligence (AI) technology, grounded in functionalism, claims to simulate or replicate human judgment. To evaluate this claim, it is necessary to examine whether AI judgments exhibit the essential characteristics of human judgment. This paper investigates the unexplainability of AI judgments through the lens of Kant's theory of judgment. Drawing on Kant's four logical forms-quantity, quality, relation, and modality-this study identifies what may be called AI's uncertainty, a condition in which different forms of judgment become entangled. In particular, with regard to modality, this study argues that the SoftMax function forcibly reframes AI judgments as possibility judgments. Furthermore, since complete definitions in natural language are impossible, words are, by their very nature, ultimately unexplainable; therefore, a fully complete functional implementation is theoretically unattainable.
- Abstract(参考訳): カントの純粋推論批判は、認識論の歴史に大きく貢献し、人間の判断の根底にある先駆的原理の構造を解明するためのカテゴリの表を提案している。
人工知能(AI)技術は機能主義に根ざし、人間の判断をシミュレートまたは再現すると主張している。
この主張を評価するためには、AI判断が人間の判断の本質的な特徴を示すかどうかを検討する必要がある。
本稿では, カントの判断理論のレンズによるAI判断の不説明性について検討する。
カントの4つの論理形式-量、品質、関係、モダリティ-に基づいて、この研究はAIの不確実性(AIの異なる形態の判断が絡み合う状態)と呼ばれるものを特定する。
特に、モダリティに関して、この研究はSoftMax関数がAI判断を可能性判断として強制的に再編成すると主張している。
さらに、自然言語における完全定義は不可能であるため、言葉はその性質上、究極的には説明不可能である。
関連論文リスト
- The AI Ethical Resonance Hypothesis: The Possibility of Discovering Moral Meta-Patterns in AI Systems [0.0]
この論文は、人間の心に見えない微妙な道徳的パターンを識別する能力によって、高度なAIシステムが出現する可能性を示唆している。
この論文は、大量の倫理的文脈を処理し、合成することによって、AIシステムは文化的、歴史的、個人的バイアスを超越する道徳的メタパターンを発見する可能性を探求する。
論文 参考訳(メタデータ) (2025-07-13T08:28:06Z) - Epistemic Scarcity: The Economics of Unresolvable Unknowns [0.0]
我々は、AIシステムは経済調整の中核的な機能を実行することができないと主張している。
我々は、構成主義的合理主義の拡張として、支配的な倫理的AIフレームワークを批判する。
論文 参考訳(メタデータ) (2025-07-02T08:46:24Z) - A Representationalist, Functionalist and Naturalistic Conception of Intelligence as a Foundation for AGI [0.0]
論文は、人工知能(AGI)の創出に関連する基礎原則を分析している。
知性は、これまで未知の条件下でゴールを達成できる新しいスキルを作る能力であると理解されている。
AGIは、ノー・フリー・ランチの定理によって制限されているにもかかわらず、人間よりも世界への根本的なアクセスを得られることが示されている。
論文 参考訳(メタデータ) (2025-03-10T17:58:00Z) - On Benchmarking Human-Like Intelligence in Machines [77.55118048492021]
現在のAI評価パラダイムは、人間のような認知能力を評価するには不十分である、と我々は主張する。
人為的なラベルの欠如、人間の反応の多様性と不確実性の表現の不適切な表現、単純で生態学的に無意味なタスクへの依存。
論文 参考訳(メタデータ) (2025-02-27T20:21:36Z) - A.I. go by many names: towards a sociotechnical definition of artificial intelligence [0.0]
人工知能(AI)の定義は永続的な課題であり、技術的曖昧さと様々な解釈に悩まされることが多い。
このエッセイは、研究に明快さを必要とする研究者にとって不可欠である、AIの社会技術的定義を論証するものである。
論文 参考訳(メタデータ) (2024-10-17T11:25:50Z) - Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills [24.04643864795939]
人々の意思決定能力は、意思決定支援にAIに頼ると、しばしば改善に失敗する。
ほとんどのAIシステムは、AIの決定を正当化する一方的な説明を提供するが、ユーザーの思考を考慮しない。
我々は、AIの選択と予測された、おそらく人間の選択との違いを説明する、人間中心のコントラスト的な説明を生成するためのフレームワークを紹介します。
論文 参考訳(メタデータ) (2024-10-05T18:21:04Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - On the consistent reasoning paradox of intelligence and optimal trust in AI: The power of 'I don't know' [79.69412622010249]
一貫性推論(Consistent reasoning)は、人間の知性の中心にある、同等のタスクを扱う能力である。
CRPは、一貫性のある推論は誤認を意味する、と論じている。
論文 参考訳(メタデータ) (2024-08-05T10:06:53Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
我々は決定可能性を達成するために新しい意味論的アプローチを用いる。
具体的には、知識の論理S5$_n$と(知識)可換性と呼ばれる相互作用公理を拡大する。
我々は,本フレームワークが,独立した知識である共通知識の有限的非固定点的特徴を認めていることを証明した。
論文 参考訳(メタデータ) (2023-07-28T11:26:26Z) - Categorical Foundations of Explainable AI: A Unifying Theory [8.637435154170916]
本稿では、カテゴリー理論の十分に資金提供された形式主義を用いて、鍵となるXAI概念とプロセスの数学的に厳密な定義を初めて提示する。
i)既存の学習スキームとアーキテクチャをモデル化し、(ii)正式に「説明」という用語を定義し、(iii)XAIの理論的基盤を確立し、(iv)メソッドの説明の一般的に見落とされた側面を分析する。
論文 参考訳(メタデータ) (2023-04-27T11:10:16Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
我々は、決定を完全に理解するためには、関連する特徴に関する知識だけでなく、無関係な情報の認識もAIシステムのユーザーのメンタルモデルの作成に大きく貢献すると主張している。
私たちのアプローチは、Alterfactual Explanations(Alterfactual Explanations)と呼ばれ、AIの入力の無関係な特徴が変更された別の現実を示すことに基づいています。
我々は,AIの推論のさまざまな側面を,反事実的説明法よりも理解するために,人工的説明が適していることを示す。
論文 参考訳(メタデータ) (2022-07-19T16:20:37Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Some Critical and Ethical Perspectives on the Empirical Turn of AI
Interpretability [0.0]
我々は、現在人工知能開発で直面している2つの問題、すなわち、倫理の欠如とAI決定の解釈可能性の欠如について考察する。
実験により,説明書作成の実証的かつリベラルな転換は,否定力の低いAI説明を選択する傾向にあることを示した。
我々は、倫理的AIの今後の発展のためのシナリオとして、より外部規制やAI説明の自由化の2つを提案する。
論文 参考訳(メタデータ) (2021-09-20T14:41:50Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Cognitive Argumentation and the Suppression Task [1.027974860479791]
本稿では,認知論(Cognitive Argumentation)と呼ばれる新たなフレームワークにおいて,人間の推論をモデル化する上での課題について述べる。
このフレームワークは認知科学における経験的および理論的研究に基づく認知原理に依存しており、AIから計算議論の一般的かつ抽象的な枠組みを適応させる。
我々は、認知論は、人間の条件推論に一貫性があり、認知的に適切なモデルを提供すると論じている。
論文 参考訳(メタデータ) (2020-02-24T10:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。