Deterministic photonic entanglement arising from non-Abelian quantum holonomy
- URL: http://arxiv.org/abs/2407.20368v3
- Date: Thu, 06 Feb 2025 05:01:23 GMT
- Title: Deterministic photonic entanglement arising from non-Abelian quantum holonomy
- Authors: Aniruddha Bhattacharya, Chandra Raman,
- Abstract summary: We develop a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light.
Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states.
We envisage that this entangling mechanism could be utilized for deterministic quantum information processing with light.
- Score: 0.0
- License:
- Abstract: Realizing deterministic, high-fidelity entangling interactions--of the kind that can be utilized for efficient quantum information processing--between photons remains an elusive goal. Here, we address this long-standing issue by devising a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light by using an on-chip photonic system that has recently been shown to implement three-dimensional, non-Abelian quantum holonomy. Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states, and that the underlying entanglement can be distilled and purified for applications in quantum science. Crucially, we generalize this approach to demonstrate the potentiality of deterministically entangling two arbitrarily high, $N$-dimensional quantum systems, by formally establishing a deep connection between the matrix representations of the unitary quantum holonomy--within energy-degenerate subspaces in which the total excitation number is conserved--and the $\left(2j+1\right)$-dimensional irreducible representations of the rotation operator, where $j = \left(N-1\right)/2$ and $N \geq 2$. Specifically, our protocol deterministically entangles spatially localized modes that are not only distinguishable but are also individually accessible and amenable to state preparation and measurement, and therefore, we envisage that this entangling mechanism could be utilized for deterministic quantum information processing with light.
Related papers
- Exact path integrals on half-line in quantum cosmology with a fluid clock and aspects of operator ordering ambiguity [0.0]
We perform $textitexact$ half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock.
We argue that a particular ordering prescription in the quantum theory can preserve two symmetries.
arXiv Detail & Related papers (2025-01-20T19:00:02Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Quantum Tensor Product Decomposition from Choi State Tomography [0.0]
We present an algorithm for unbalanced partitions into a small subsystem and a large one (the environment) to compute the tensor product decomposition of a unitary.
This quantum algorithm may be used to make predictions about operator non-locality, effective open quantum dynamics on a subsystem, as well as for finding low-rank approximations and low-depth compilations of quantum circuit unitaries.
arXiv Detail & Related papers (2024-02-07T16:36:47Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Large-Scale Quantum Separability Through a Reproducible Machine Learning
Lens [5.499796332553708]
The quantum separability problem consists in deciding whether a bipartite density matrix is entangled or separable.
We propose a machine learning pipeline for finding approximate solutions for this NP-hard problem in large-scale scenarios.
arXiv Detail & Related papers (2023-06-15T18:53:26Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.