論文の概要: Hybrid Heuristic Algorithms for Adiabatic Quantum Machine Learning Models
- arxiv url: http://arxiv.org/abs/2407.21062v2
- Date: Wed, 14 May 2025 04:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.18508
- Title: Hybrid Heuristic Algorithms for Adiabatic Quantum Machine Learning Models
- Title(参考訳): Adiabatic Quantum Machine Learning Modelのためのハイブリッドヒューリスティックアルゴリズム
- Authors: Bahram Alidaee, Haibo Wang, Lutfu Sua, Wade Liu,
- Abstract要約: 本稿では"r-flip"戦略を取り入れた新しいハイブリッドアルゴリズムを提案する。
この戦略は、大規模QUBO問題をより効果的に解決し、より良いソリューション品質と低い計算コストを提供することを目的としている。
r-flipアプローチは、クロスドッキング、サプライチェーン管理、マシンスケジューリング、不正検出など、さまざまな分野に実用的応用がある。
- 参考スコア(独自算出の注目度): 2.7407913606612615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous established machine learning models and various neural network architectures can be restructured as Quadratic Unconstrained Binary Optimization (QUBO) problems. A significant challenge in Adiabatic Quantum Machine Learning (AQML) is the computational demand of the training phase. To mitigate this, approximation techniques inspired by quantum annealing, like Simulated Annealing and Multiple Start Tabu Search (MSTS), have been employed to expedite QUBO-based AQML training. This paper introduces a novel hybrid algorithm that incorporates an "r-flip" strategy. This strategy is aimed at solving large-scale QUBO problems more effectively, offering better solution quality and lower computational costs compared to existing MSTS methods. The r-flip approach has practical applications in diverse fields, including cross-docking, supply chain management, machine scheduling, and fraud detection. The paper details extensive computational experiments comparing this r-flip enhanced hybrid heuristic against a standard MSTS approach. These tests utilize both standard benchmark problems and three particularly large QUBO instances. The results indicate that the r-flip enhanced method consistently produces high-quality solutions efficiently, operating within practical time constraints.
- Abstract(参考訳): 多数の確立された機械学習モデルとさまざまなニューラルネットワークアーキテクチャは、準非制約バイナリ最適化(QUBO)問題として再構成することができる。
AQML(Adiabatic Quantum Machine Learning)の重要な課題は、トレーニングフェーズの計算要求である。
これを軽減するために、Simulated AnnealingやMultiple Start Tabu Search (MSTS)のような量子アニールにインスパイアされた近似技術がQUBOベースのAQMLトレーニングの高速化に使用されている。
本稿では"r-flip"戦略を取り入れた新しいハイブリッドアルゴリズムを提案する。
この戦略は、大規模QUBO問題をより効果的に解決することを目的としており、既存のMSTS法と比較して、解の質と計算コストの低減を実現している。
r-flipアプローチは、クロスドッキング、サプライチェーン管理、マシンスケジューリング、不正検出など、さまざまな分野に実用的応用がある。
本稿では、このr-flip拡張ハイブリッドヒューリスティックを標準MSTSアプローチと比較した広範な計算実験について詳述する。
これらのテストは、標準ベンチマーク問題と、特に大きな3つのQUBOインスタンスの両方を利用する。
以上の結果から, r-flip拡張法は, 実時間制約下で, 高品質な解を効率よく生成することがわかった。
関連論文リスト
- Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems [0.0]
本稿では, 疎線形系をより効率的に解くために, プレコンディショニング手法とHHLアルゴリズムを組み合わせるハイブリッド古典量子アルゴリズムを提案する。
提案手法は,高速化とスケーラビリティにおいて従来の手法を超越するだけでなく,量子アルゴリズムの本質的な制約を緩和することを示す。
論文 参考訳(メタデータ) (2024-10-03T11:36:14Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Multi-Timescale Ensemble Q-learning for Markov Decision Process Policy
Optimization [21.30645601474163]
元々のQ-ラーニングは、非常に大きなネットワークにわたるパフォーマンスと複雑性の課題に悩まされている。
従来のQ-ラーニングに適応したモデルフリーアンサンブル強化学習アルゴリズムを提案する。
計算結果から,提案アルゴリズムは平均ポリシエラーを最大55%,実行時複雑性を最大50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-02-08T08:08:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Quantum Semi-Supervised Kernel Learning [4.726777092009554]
本稿では,セミスーパービジョンカーネル支援ベクトルマシンを学習するための量子機械学習アルゴリズムを提案する。
完全教師付き量子LS-SVMと同じスピードアップを維持していることを示す。
論文 参考訳(メタデータ) (2022-04-22T13:39:55Z) - QUBO Formulations for Training Machine Learning Models [0.0]
量子コンピューティングのような非伝統的なコンピューティングパラダイムを活用して、機械学習モデルを効率的にトレーニングします。
線形回帰、サポートベクターマシン(SVM)、等サイズのk平均クラスタリングの3つの機械学習モデルのトレーニング問題をQUBO問題として定式化し、断熱量子コンピュータで効率的にトレーニングできるようにした。
我々の定式化の時間と空間の複雑さは(SVM や等サイズの k-平均クラスタリングの場合)、あるいは(線形回帰の場合)その古典的表現と同等であることを示す。
論文 参考訳(メタデータ) (2020-08-05T21:16:05Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。