論文の概要: CREW: Facilitating Human-AI Teaming Research
- arxiv url: http://arxiv.org/abs/2408.00170v2
- Date: Mon, 02 Dec 2024 18:37:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:40.739418
- Title: CREW: Facilitating Human-AI Teaming Research
- Title(参考訳): CREW:人間とAIのコラボレーション研究に成功
- Authors: Lingyu Zhang, Zhengran Ji, Boyuan Chen,
- Abstract要約: 我々は,リアルタイム意思決定シナリオにおける人間-AIコラボレーション研究を支援するプラットフォームCREWを紹介する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
CREWは、最先端のアルゴリズムとよく訓練されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
- 参考スコア(独自算出の注目度): 3.7324091969140776
- License:
- Abstract: With the increasing deployment of artificial intelligence (AI) technologies, the potential of humans working with AI agents has been growing at a great speed. Human-AI teaming is an important paradigm for studying various aspects when humans and AI agents work together. The unique aspect of Human-AI teaming research is the need to jointly study humans and AI agents, demanding multidisciplinary research efforts from machine learning to human-computer interaction, robotics, cognitive science, neuroscience, psychology, social science, and complex systems. However, existing platforms for Human-AI teaming research are limited, often supporting oversimplified scenarios and a single task, or specifically focusing on either human-teaming research or multi-agent AI algorithms. We introduce CREW, a platform to facilitate Human-AI teaming research in real-time decision-making scenarios and engage collaborations from multiple scientific disciplines, with a strong emphasis on human involvement. It includes pre-built tasks for cognitive studies and Human-AI teaming with expandable potentials from our modular design. Following conventional cognitive neuroscience research, CREW also supports multimodal human physiological signal recording for behavior analysis. Moreover, CREW benchmarks real-time human-guided reinforcement learning agents using state-of-the-art algorithms and well-tuned baselines. With CREW, we were able to conduct 50 human subject studies within a week to verify the effectiveness of our benchmark.
- Abstract(参考訳): 人工知能(AI)技術の展開の増加に伴い、AIエージェントを扱う人間の可能性は大きく成長している。
人間とAIエージェントが一緒に働くとき、さまざまな側面を研究するための重要なパラダイムである。
人間-AIチーム研究のユニークな側面は、人間とAIエージェントを共同で研究することであり、機械学習から人間-コンピュータインタラクション、ロボティクス、認知科学、神経科学、心理学、社会科学、複雑なシステムまで、多分野にわたる研究活動を要求することである。
しかしながら、Human-AIチーム研究のための既存のプラットフォームは限定的であり、多くの場合、過度に単純化されたシナリオと単一のタスクをサポートし、特に人間チーム研究またはマルチエージェントAIアルゴリズムに焦点を当てている。
我々は、リアルタイム意思決定シナリオにおける人間とAIのコラボレーション研究を促進するプラットフォームCREWを紹介し、人間の関与を強く強調する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
従来の認知神経科学の研究に続いて、CREWは行動分析のためのマルチモーダルヒト生理的信号記録もサポートする。
さらにCREWは、最先端のアルゴリズムと十分に調整されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
CREWでは、1週間以内に50人の被験者による研究を行い、ベンチマークの有効性を検証することができた。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings [3.506120162002989]
AI CollaboratorはOpenAIのGPT-4を利用しており、人間とAIのコラボレーション研究のために設計された画期的なツールである。
その特長は、研究者がさまざまな実験的なセットアップのためにカスタマイズされたAIペルソナを作成できることだ。
この機能は、チーム設定におけるさまざまな対人的ダイナミクスをシミュレートするために不可欠です。
論文 参考訳(メタデータ) (2024-05-16T22:14:54Z) - Human-AI Collaboration in Real-World Complex Environment with
Reinforcement Learning [8.465957423148657]
人間からの学習は効果的であり、人間とAIのコラボレーションは、人間の制御された完全に自律的なAIエージェントよりも優れていることを示す。
我々は,AIエージェントを効果的に支援するためのユーザインタフェースを開発した。
論文 参考訳(メタデータ) (2023-12-23T04:27:24Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。