Perfect Wave Transfer in Continuous Quantum Systems
- URL: http://arxiv.org/abs/2408.00723v1
- Date: Thu, 1 Aug 2024 17:15:44 GMT
- Title: Perfect Wave Transfer in Continuous Quantum Systems
- Authors: Per Moosavi, Matthias Christandl, Gian Michele Graf, Spyros Sotiriadis,
- Abstract summary: We show that reflection symmetry is necessary for perfect wave transfer (PWT) in any inhomogeneous conformal field theory.
Using bosonization, our results extend these notions to interacting quantum field theories.
- Score: 0.9903198600681908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the perfect transfer of information in 1+1D continuous quantum systems. This includes effective descriptions of inhomogeneous spin chains, for which the notion of perfect state transfer in quantum information was introduced, and here phrased in terms of waves. We show that reflection symmetry is necessary for perfect wave transfer (PWT) in any inhomogeneous conformal field theory, and even sufficient when restricted to one-particle excitations. To determine if or when it is sufficient more generally, we first break conformal invariance and study a broad class of 1+1D bosonic theories. We show that the question can then be posed as an inverse Sturm-Liouville problem that determines when the bosonic theory exhibits PWT. We demonstrate how to uniquely solve this problem, which also shows that reflection symmetry is sufficient for the special case with conformal invariance. Using bosonization, our continuum results extend these notions to interacting quantum field theories.
Related papers
- A theory-independent bound saturated by quantum mechanics [0.0]
Tsirelson's original inequality for the precession protocol serves as a monopartite test of quantumness.
We consider this inequality for measurements with finitely many outcomes in a theory-independent manner.
arXiv Detail & Related papers (2024-01-29T13:23:55Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Open quantum systems decay across time [0.0]
We first revisit the meaning, domain and contradictions of a few of the most widely used approximations.
We derive an effective time-dependent decay theory and corresponding generalized quantum regression relations for an open quantum system linearly coupled to an environment.
arXiv Detail & Related papers (2020-06-03T16:06:30Z) - Bosonic entanglement renormalization circuits from wavelet theory [1.6312226592634047]
We show how to construct quantum circuits that implement entanglement renormalization for ground states of arbitrary free bosonic chains.
The construction is based on wavelet theory, and the dispersion relation of the Hamiltonian is translated into a filter design problem.
arXiv Detail & Related papers (2020-04-24T19:27:29Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.