論文の概要: Distance-Preserving Generative Modeling of Spatial Transcriptomics
- arxiv url: http://arxiv.org/abs/2408.00911v1
- Date: Thu, 1 Aug 2024 21:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:56:17.929988
- Title: Distance-Preserving Generative Modeling of Spatial Transcriptomics
- Title(参考訳): 空間トランスクリプトークスの距離保存生成モデル
- Authors: Wenbin Zhou, Jin-Hong Du,
- Abstract要約: 本稿では,空間転写学における距離保存型生成モデルについて紹介する。
得られた空間情報を用いて、類似した対距離構造を持つ遺伝子表現の学習表現空間を正規化する。
我々のフレームワークは、遺伝子発現モデリングのためのあらゆる変分推論に基づく生成モデルとの互換性を付与する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial transcriptomics data is invaluable for understanding the spatial organization of gene expression in tissues. There have been consistent efforts in studying how to effectively utilize the associated spatial information for refining gene expression modeling. We introduce a class of distance-preserving generative models for spatial transcriptomics, which utilizes the provided spatial information to regularize the learned representation space of gene expressions to have a similar pair-wise distance structure. This helps the latent space to capture meaningful encodings of genes in spatial proximity. We carry out theoretical analysis over a tractable loss function for this purpose and formalize the overall learning objective as a regularized evidence lower bound. Our framework grants compatibility with any variational-inference-based generative models for gene expression modeling. Empirically, we validate our proposed method on the mouse brain tissues Visium dataset and observe improved performance with variational autoencoders and scVI used as backbone models.
- Abstract(参考訳): 空間転写学データは、組織における遺伝子発現の空間的構造を理解するのに有用である。
遺伝子表現モデリングにおいて,関連空間情報を効果的に活用する方法について,一貫した研究がなされている。
得られた空間情報を用いて、解析された遺伝子発現の表現空間を、同様のペアワイズ距離構造を持つように調整する空間転写学のための距離保存型生成モデルについて紹介する。
これにより、潜伏空間は空間的近接で意味のある遺伝子のエンコーディングを捉えるのに役立つ。
この目的のために, トラクタブルな損失関数に関する理論的解析を行い, 学習対象を正規化された証拠の下位境界として定式化する。
我々のフレームワークは、遺伝子発現モデリングのためのあらゆる変分推論に基づく生成モデルとの互換性を付与する。
実験により,提案手法をマウス脳組織のVisiumデータセット上で検証し,背骨モデルとして用いた変異型オートエンコーダとscVIを用いて改良された性能を観察した。
関連論文リスト
- Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
本稿では、これらの問題に対処するために、新しい再視覚的二重ドメイン自己教師型深層展開ネットワークを提案する。
エンド・ツー・エンドの再構築を実現するために,シャンブルとポック・プロキシ・ポイント・アルゴリズム(DUN-CP-PPA)に基づく深層展開ネットワークを設計する。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2025-01-07T12:29:32Z) - stMCDI: Masked Conditional Diffusion Model with Graph Neural Network for Spatial Transcriptomics Data Imputation [8.211887623977214]
空間転写学データ計算のための新しい条件拡散モデルである textbfstMCDI を導入する。
ランダムにマスキングされたデータ部分を使ってトレーニングされたデノベーションネットワークをガイダンスとして使用し、非マスキングされたデータは条件として機能する。
空間転写学データセットから得られた結果は,既存の手法と比較して,本手法の性能を解明するものである。
論文 参考訳(メタデータ) (2024-03-16T09:06:38Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Generation of non-stationary stochastic fields using Generative
Adversarial Networks with limited training data [0.0]
本研究では,地質的なチャネル化パターンのデータセットに対してGAN(Generative Adversarial Networks)モデルをトレーニングする際の問題点について検討する。
空間条件間の相関関係を効果的に学習する訓練法を開発した。
我々のモデルは、目標地図と強く相関して、トレーニングサンプル以外の地質学的に証明可能な実現法を生成することができた。
論文 参考訳(メタデータ) (2022-05-11T13:09:47Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
知的交通システム(ITS)時代における交通管理・交通シミュレーションにおける原位置推定の役割
これまでのモデルベースのモデルは、未決定の課題に直面しており、追加の仮定と追加のデータに対する必死な需要が存在する。
本稿では,2層アテンション機構を備えた新しいグラフマッチング手法であるC-GAMEを提案する。
論文 参考訳(メタデータ) (2021-11-26T08:57:21Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。