論文の概要: PERSOMA: PERsonalized SOft ProMpt Adapter Architecture for Personalized Language Prompting
- arxiv url: http://arxiv.org/abs/2408.00960v1
- Date: Fri, 2 Aug 2024 00:24:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:46:34.109252
- Title: PERSOMA: PERsonalized SOft ProMpt Adapter Architecture for Personalized Language Prompting
- Title(参考訳): ペルソマ:パーソナライズされたSoft ProMptアダプタアーキテクチャ
- Authors: Liam Hebert, Krishna Sayana, Ambarish Jash, Alexandros Karatzoglou, Sukhdeep Sodhi, Sumanth Doddapaneni, Yanli Cai, Dima Kuzmin,
- Abstract要約: PERSOMAは、ユーザ履歴を効率的にキャプチャするための新しいアプローチを提供する。
これは、対話を自由形式のテキストとして表現力のあるソフトプロンプト埋め込みに再サンプリングし、圧縮することで実現される。
PERSOMAは,既存の埋め込み技術やテキストプロンプト技術と比較して,大規模かつ複雑なユーザ履歴を扱う能力に優れていた。
- 参考スコア(独自算出の注目度): 44.32537382154617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the nuances of a user's extensive interaction history is key to building accurate and personalized natural language systems that can adapt to evolving user preferences. To address this, we introduce PERSOMA, Personalized Soft Prompt Adapter architecture. Unlike previous personalized prompting methods for large language models, PERSOMA offers a novel approach to efficiently capture user history. It achieves this by resampling and compressing interactions as free form text into expressive soft prompt embeddings, building upon recent research utilizing embedding representations as input for LLMs. We rigorously validate our approach by evaluating various adapter architectures, first-stage sampling strategies, parameter-efficient tuning techniques like LoRA, and other personalization methods. Our results demonstrate PERSOMA's superior ability to handle large and complex user histories compared to existing embedding-based and text-prompt-based techniques.
- Abstract(参考訳): ユーザの広範なインタラクション履歴のニュアンスを理解することは、進化するユーザの好みに適応できる正確でパーソナライズされた自然言語システムを構築するための鍵となる。
そこで我々は,Personalized Soft Prompt AdapterアーキテクチャであるPERSOMAを紹介した。
大規模な言語モデルのパーソナライズされたプロンプトメソッドとは異なり、PERSOMAはユーザ履歴を効率的にキャプチャするための新しいアプローチを提供する。
LLMの入力として埋め込み表現を利用する最近の研究に基づいて、自由形式のテキストとして相互作用を再サンプリングし、圧縮することで、これを実現できる。
我々は,様々なアダプタアーキテクチャ,第1ステージサンプリング戦略,LoRAなどのパラメータ効率向上手法,その他パーソナライズ手法を評価することで,我々のアプローチを厳格に検証する。
PERSOMAは,既存の埋め込み技術やテキストプロンプト技術と比較して,大規模かつ複雑なユーザ履歴を扱う能力に優れていた。
関連論文リスト
- Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-04T01:46:49Z) - Reinforced Prompt Personalization for Recommendation with Large Language Models [24.360796133889156]
本稿では,個々のユーザに対して個別のプロンプトをパーソナライズすることを目的とした,インスタンスワイドプロンプトの概念を紹介する。
効率と品質を向上させるため、RPPは単語ごとの単語を検索するのではなく、文レベルでプロンプトをパーソナライズする。
論文 参考訳(メタデータ) (2024-07-24T09:24:49Z) - PeaPOD: Personalized Prompt Distillation for Generative Recommendation [11.27949757550442]
本稿では,PErson Alized PrOmpt Distillation (PeaPOD)アプローチを提案する。
現実世界におけるユーザの嗜好の複雑さを考えると,ユーザの興味に基づいて動的に重み付けされる学習可能なプロンプトの共有集合を維持している。
実世界の3つのデータセットに対する実験結果から,PiaPODモデルがシーケンシャルレコメンデーション,トップnレコメンデーション,説明生成タスクに与える影響が示された。
論文 参考訳(メタデータ) (2024-07-06T09:58:58Z) - Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search [9.243535345193711]
提案手法は,大規模言語モデルを用いて,個人化された対話を生成するために,一人の人間労働者を誘導する。
LAPSは大規模、人書き、マルチセッション、マルチドメインの会話を収集できる。
その結果,抽出された嗜好を用いて明示的に生成した応答は,ユーザの実際の嗜好と一致していることがわかった。
論文 参考訳(メタデータ) (2024-05-06T13:53:03Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
大規模言語モデル(LLM)のパーソナライゼーションはますます重要になっている。
1つのPEFT Per User (OPPU) は、パーソナライズされたパラメータ効率の微調整(PEFT)モジュールを使用して、ユーザ固有の行動パターンと好みを保存する。
OPPUは、LaMPベンチマークの7つのタスクで既存のプロンプトベースのメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-06T21:03:52Z) - User Embedding Model for Personalized Language Prompting [9.472634942498859]
自由形式のテキストでユーザ履歴を効率よく処理し,それを埋め込みとして表現する新しいユーザ埋め込みモジュール(UEM)を導入する。
本実験は, より長い歴史を扱う上で, このアプローチの優れた能力を示すものである。
この研究の主な貢献は、埋め込みとして表現されたユーザ信号で言語モデルをバイアスする能力を示すことである。
論文 参考訳(メタデータ) (2024-01-10T00:35:52Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
大きな言語モデル(LLM)は、常識的な知識と推論を活用する能力を示した。
大規模言語モデル(LLM)の最近の進歩は、コモンセンスの知識と推論を活用できることを顕著に示している。
本研究では,パーソナライズされたテキストベースのレコメンデーションを改善するために,テキストエンリッチメントの4つの異なる促進戦略を取り入れた新しいアプローチ LLM-Rec を提案する。
論文 参考訳(メタデータ) (2023-07-24T18:47:38Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
強化学習(TEMPERA)を用いたテスト時間プロンプト編集を提案する。
従来のプロンプト生成手法とは対照的に、TEMPERAは事前知識を効率的に活用することができる。
本手法は従来の微調整法と比較して試料効率の平均改善率を5.33倍に向上させる。
論文 参考訳(メタデータ) (2022-11-21T22:38:20Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE)は、事前に定義されたユーザペルソナ記述を意味論的に相関したコンテンツで拡張することができる。
PEEはペルソナ探索とペルソナ搾取という2つの主要なモジュールで構成されている。
提案手法は, 自動評価と人的評価の両面で, 最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-02-06T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。