論文の概要: Sparse Linear Regression when Noises and Covariates are Heavy-Tailed and Contaminated by Outliers
- arxiv url: http://arxiv.org/abs/2408.01336v1
- Date: Fri, 2 Aug 2024 15:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:58:15.422670
- Title: Sparse Linear Regression when Noises and Covariates are Heavy-Tailed and Contaminated by Outliers
- Title(参考訳): 騒音と共変物質が重畳されたり、外部から汚染されたりした場合の疎線形回帰
- Authors: Takeyuki Sasai, Hironori Fujisawa,
- Abstract要約: 本研究では,線形回帰係数を空間的仮定で推定する問題について検討する。
重尾分布から共変量やノイズを採取するだけでなく, オフレーヤによって汚染される状況も考慮する。
我々の推定器は効率的に計算でき、鋭い誤差境界を示すことができる。
- 参考スコア(独自算出の注目度): 2.0257616108612373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate a problem estimating coefficients of linear regression under sparsity assumption when covariates and noises are sampled from heavy tailed distributions. Additionally, we consider the situation where not only covariates and noises are sampled from heavy tailed distributions but also contaminated by outliers. Our estimators can be computed efficiently, and exhibit sharp error bounds.
- Abstract(参考訳): 重み付き分布から共変量と雑音をサンプリングする場合, 空間性仮定の下で線形回帰係数を推定する問題について検討する。
また, 重尾分布から共変量やノイズを採取するだけでなく, オフレーヤによって汚染される状況も検討する。
我々の推定器は効率的に計算でき、鋭い誤差境界を示すことができる。
関連論文リスト
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
本稿では,ハマー確率分布として表される観測データの可能性を考慮した,ガウス過程フレームワークにおけるロバストなプロセスモデルを提案する。
提案モデルでは、予測統計に基づく重みを用いて、残差を拡大し、潜伏関数推定における垂直外れ値と悪レバレッジ点の影響を限定する。
論文 参考訳(メタデータ) (2023-01-19T02:59:33Z) - Outlier Robust and Sparse Estimation of Linear Regression Coefficients [2.0257616108612373]
線形回帰係数のアウトリー・ロバストとスパース推定について考察する。
本研究は,本研究と類似の関心を共有できる先行研究よりも,仮説の弱い誤差境界を示す。
論文 参考訳(メタデータ) (2022-08-24T14:56:52Z) - Robust and Sparse Estimation of Linear Regression Coefficients with
Heavy-tailed Noises and Covariates [0.0]
我々の推定器は効率的に計算でき、さらに推定誤差は鋭い。
本稿では, 重み付き分布から共変数とノイズを抽出し, 悪質な外乱によって共変数とノイズが汚染されることを論じる。
論文 参考訳(メタデータ) (2022-06-15T15:23:24Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Adversarial robust weighted Huber regression [2.0257616108612373]
線形回帰係数のロバストな推定を考察する。
安定な階数と共分散行列の条件数に依存する推定誤差境界を導出する。
論文 参考訳(メタデータ) (2021-02-22T15:50:34Z) - Robust regression with covariate filtering: Heavy tails and adversarial
contamination [6.939768185086755]
より強い汚染モデルにおいて,ハマー回帰,最小トリミング正方形,最小絶対偏差推定器を同時に計算および統計的に効率的に推定する方法を示す。
この設定では、ハマー回帰推定器がほぼ最適誤差率を達成するのに対し、最小のトリミング正方形と最小の絶対偏差推定器は、後処理ステップを適用した後、ほぼ最適誤差を達成することができる。
論文 参考訳(メタデータ) (2020-09-27T22:48:48Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。