論文の概要: Derivation of Back-propagation for Graph Convolutional Networks using Matrix Calculus and its Application to Explainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2408.01408v1
- Date: Fri, 2 Aug 2024 17:33:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:38:29.983372
- Title: Derivation of Back-propagation for Graph Convolutional Networks using Matrix Calculus and its Application to Explainable Artificial Intelligence
- Title(参考訳): 行列計算を用いたグラフ畳み込みネットワークのバックプロパゲーションの導出と説明可能な人工知能への応用
- Authors: Yen-Che Hsiao, Rongting Yue, Abhishek Dutta,
- Abstract要約: 本稿では,グラフ畳み込みニューラルネットワークのバックプロパゲーションアルゴリズムの包括的,詳細な導出を行う。
導出は任意の要素単位の活性化関数と任意の数の層を含むように拡張される。
得られたクローズドフォームソリューションが、説明可能なAIと感度分析の開発をいかに促進するかを示す。
- 参考スコア(独自算出の注目度): 3.4644295862912866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a comprehensive and detailed derivation of the backpropagation algorithm for graph convolutional neural networks using matrix calculus. The derivation is extended to include arbitrary element-wise activation functions and an arbitrary number of layers. The study addresses two fundamental problems, namely node classification and link prediction. To validate our method, we compare it with reverse-mode automatic differentiation. The experimental results demonstrate that the median sum of squared errors of the updated weight matrices, when comparing our method to the approach using reverse-mode automatic differentiation, falls within the range of $10^{-18}$ to $10^{-14}$. These outcomes are obtained from conducting experiments on a five-layer graph convolutional network, applied to a node classification problem on Zachary's karate club social network and a link prediction problem on a drug-drug interaction network. Finally, we show how the derived closed-form solution can facilitate the development of explainable AI and sensitivity analysis.
- Abstract(参考訳): 本稿では,行列計算を用いたグラフ畳み込みニューラルネットワークのバックプロパゲーションアルゴリズムの包括的,詳細な導出を行う。
導出は任意の要素単位の活性化関数と任意の数の層を含むように拡張される。
この研究はノード分類とリンク予測という2つの基本的な問題に対処する。
そこで本手法をリバースモード自動微分と比較した。
提案手法を逆モード自動微分法と比較した場合, 重み行列の正方形誤差の中央値が10^{-18}$から10^{-14}$の範囲に収まることを示した。
これらの結果は,Zacharyの空手部ソーシャルネットワークにおけるノード分類問題と薬物・薬物相互作用ネットワークにおけるリンク予測問題に適用した5層グラフ畳み込みネットワークの実験から得られる。
最後に、導出されたクローズドフォームソリューションが、説明可能なAIと感度分析の開発をいかに促進するかを示す。
関連論文リスト
- Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
本稿では,拡散カーネルのスケールによって特徴集約の範囲を制御できる拡散学習フレームワークを提案する。
本モデルは,最先端データセットの性能評価のためのノードワイズ分類のための様々な標準で検証されている。
グラフ分類のための実世界の脳ネットワークデータにも検証され、アルツハイマー分類の実用性を実証している。
論文 参考訳(メタデータ) (2024-01-22T10:57:11Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Neural incomplete factorization: learning preconditioners for the conjugate gradient method [2.899792823251184]
我々は、効率的なプレコンディショナーの生成を加速するためのデータ駆動型アプローチを開発する。
一般的に手動のプリコンディショナーをグラフニューラルネットワークの出力に置き換える。
本手法は, 行列の不完全分解を発生させ, 神経不完全分解(NeuralIF)と呼ばれる。
論文 参考訳(メタデータ) (2023-05-25T11:45:46Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
多層ネットワークにおけるグラフ畳み込みの効果に関する厳密な理論的理解を示す。
単一のグラフ畳み込みは、多層ネットワークがデータを分類できる手段間の距離のレギュレーションを拡大することを示す。
ネットワーク層間の異なる組み合わせに配置されたグラフ畳み込みの性能に関する理論的および実証的な知見を提供する。
論文 参考訳(メタデータ) (2022-04-20T08:24:43Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。