論文の概要: Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
- arxiv url: http://arxiv.org/abs/2408.01701v3
- Date: Sat, 21 Dec 2024 03:47:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 19:21:29.096907
- Title: Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
- Title(参考訳): Signal-SGN:時間周波数ダイナミクスの学習による骨格行動認識のためのスパイキンググラフ畳み込みネットワーク
- Authors: Naichuan Zheng, Duyu cheng, Hailun Xia, Dapeng Liu,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、スケルトン力学のモデル化に苦慮し、最適以下のソリューションに繋がる。
本稿では,スケルトン配列の時間次元をスパイク時間ステップとして利用するSignal-SGN(Spiking Graph Convolutional Network)を提案する。
3つの大規模なデータセットを対象とした実験では、精度と計算効率において、最先端のSNNベースの手法を超えるSignal-SGNが明らかになった。
- 参考スコア(独自算出の注目度): 2.707548544084083
- License:
- Abstract: For skeleton-based action recognition, Graph Convolutional Networks (GCNs) are effective models. Still, their reliance on floating-point computations leads to high energy consumption, limiting their applicability in battery-powered devices. While energy-efficient, Spiking Neural Networks (SNNs) struggle to model skeleton dynamics, leading to suboptimal solutions. We propose Signal-SGN (Spiking Graph Convolutional Network), which utilizes the temporal dimension of skeleton sequences as the spike time steps and represents features as multi-dimensional discrete stochastic signals for temporal-frequency domain feature extraction. It combines the 1D Spiking Graph Convolution (1D-SGC) module and the Frequency Spiking Convolution (FSC) module to extract features from the skeleton represented as spiking form. Additionally, the Multi-Scale Wavelet Transform Feature Fusion (MWTF) module is proposed to extract dynamic spiking features and capture frequency-specific characteristics, enhancing classification performance. Experiments across three large-scale datasets reveal Signal-SGN exceeding state-of-the-art SNN-based methods in accuracy and computational efficiency while attaining comparable performance with GCN methods and significantly reducing theoretical energy consumption.
- Abstract(参考訳): 骨格に基づく行動認識では、グラフ畳み込みネットワーク(GCN)が有効なモデルである。
それでも、浮動小数点演算への依存は高エネルギー消費をもたらし、バッテリー駆動デバイスへの適用性を制限する。
エネルギー効率は高いが、スパイキングニューラルネットワーク(SNN)は骨格力学のモデル化に苦慮し、最適以下の解をもたらす。
本稿では,スケルトン配列の時間次元をスパイク時間ステップとして利用し,時間周波数領域の特徴抽出のための多次元離散確率信号として特徴を表現したSignal-SGN(Spiking Graph Convolutional Network)を提案する。
1Dスパイキンググラフ・コンボリューション(1D-SGC)モジュールと周波数スパイキング・コンボリューション(FSC)モジュールを組み合わせて、スパイキングフォームとして表現された骨格から特徴を抽出する。
さらに,マルチスケールウェーブレット変換機能融合 (MWTF) モジュールを提案し,動的スパイキング特性を抽出し,周波数特性を捕捉し,分類性能を向上させる。
3つの大規模データセットにわたる実験により、GCN法と同等の性能を達成し、理論エネルギー消費を大幅に削減しつつ、精度と計算効率において最先端のSNNベースの手法を超越したSignal-SGNが明らかになった。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
グラフニューラルネットワーク(GNN)は、ノード分類やグラフ分類といったタスクのための強力なツールとして登場した。
我々は以前に導入された幾何散乱変換に基づいて構築された新しいGNNであるBLIS-Net(Bi-Lipschitz Scattering Net)を紹介する。
BLIS-Netは,交通流とfMRIデータに基づいて,合成データと実世界のデータの両方において優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-10-26T17:03:14Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
ニューロモルフィックコンピューティングのアルゴリズムモデルの一つであるスパイキングニューラルネットワーク(SNN)は、時間的処理能力のために多くの研究注目を集めている。
SNNの既存のシナプス構造は、ほぼ完全な接続や空間的2次元畳み込みであり、どちらも時間的依存関係を適切に抽出できない。
生体シナプスからインスピレーションを得てシナプス接続SNNモデルを提案し,シナプス接続の時間的受容場を強化する。
時間的依存を伴うシナプスモデルの提供は、分類タスクにおけるSNNの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:13:22Z) - Continual Spatio-Temporal Graph Convolutional Networks [87.86552250152872]
時空間グラフ畳み込みニューラルネットワークを連続推論ネットワークとして再構成する。
オンライン推論において、最大109倍の時間複雑性、26倍のハードウェアアクセラレーション、最大割り当てメモリの最大52%の削減を観測した。
論文 参考訳(メタデータ) (2022-03-21T14:23:18Z) - Ultra-low Latency Spiking Neural Networks with Spatio-Temporal
Compression and Synaptic Convolutional Block [4.081968050250324]
スパイキングニューラルネットワーク(SNN)は、神経時間情報能力、低処理機能、高い生物学的妥当性を有する。
Neuro-MNIST、CIFAR10-S、DVS128ジェスチャデータセットは、個々のイベントをフレームに集約し、イベントストリーム分類の時間分解能を高める必要がある。
本研究では,NIST電流の時間ステップに個々のイベントを集約し,トレーニングや推論の遅延を低減する処理時間圧縮手法を提案する。
論文 参考訳(メタデータ) (2022-03-18T15:14:13Z) - Space-Time Graph Neural Networks [104.55175325870195]
本研究では、時空間グラフニューラルネットワーク(ST-GNN)を導入し、時間変動ネットワークデータの時空間トポロジを共同処理する。
解析の結果,システムのネットワークトポロジと時間進化の変動はST-GNNの性能に大きく影響しないことがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:08:44Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。