論文の概要: StyEmp: Stylizing Empathetic Response Generation via Multi-Grained Prefix Encoder and Personality Reinforcement
- arxiv url: http://arxiv.org/abs/2408.02271v1
- Date: Mon, 5 Aug 2024 06:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:26:02.833371
- Title: StyEmp: Stylizing Empathetic Response Generation via Multi-Grained Prefix Encoder and Personality Reinforcement
- Title(参考訳): StyEmp:マルチグラインドプレフィックスエンコーダによるスタイリング共感応答生成とパーソナリティ強化
- Authors: Yahui Fu, Chenhui Chu, Tatsuya Kawahara,
- Abstract要約: StyEmpは、共感反応生成を一貫した個性でスタイリングすることを目的としている。
システムの性格と共感的表現の関係を捉えるために設計された、多義的なプレフィックス機構が組み込まれている。
- 参考スコア(独自算出の注目度): 30.127662831325676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent approaches for empathetic response generation mainly focus on emotional resonance and user understanding, without considering the system's personality. Consistent personality is evident in real human expression and is important for creating trustworthy systems. To address this problem, we propose StyEmp, which aims to stylize the empathetic response generation with a consistent personality. Specifically, it incorporates a multi-grained prefix mechanism designed to capture the intricate relationship between a system's personality and its empathetic expressions. Furthermore, we introduce a personality reinforcement module that leverages contrastive learning to calibrate the generation model, ensuring that responses are both empathetic and reflective of a distinct personality. Automatic and human evaluations on the EMPATHETICDIALOGUES benchmark show that StyEmp outperforms competitive baselines in terms of both empathy and personality expressions.
- Abstract(参考訳): 近年の共感反応生成のアプローチは, システムの性格を考慮せずに, 感情共鳴とユーザ理解に重点を置いている。
一貫性のある人格は、実際の人間の表現において明らかであり、信頼できるシステムを作るのに重要である。
そこで本研究では,共感応答生成を一貫した個性でスタイリングすることを目的としたStyEmpを提案する。
具体的には、システムの性格と共感表現の複雑な関係を捉えるために設計された、多義的なプレフィックス機構を組み込んでいる。
さらに、コントラスト学習を利用して生成モデルを校正するパーソナリティ強化モジュールを導入し、応答が共感的かつ異なるパーソナリティの反映的であることを保証する。
EMPATHETICDIALOGUESベンチマークにおける人的評価は、StyEmpが共感と人格表現の両面で競争ベースラインを上回っていることを示している。
関連論文リスト
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning [12.766893968788263]
共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情の重要性が原因の推論を無視している。
そこで我々は,感情と原因をうまく設計したChain-of-Thoughtプロンプトを通じて統合した原因認識型共感生成手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T13:11:03Z) - APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection [19.98674724777821]
EERPDと呼ばれる新しい人格検出手法を提案する。
本手法では,人格予測において,人格に強く相関する心理的概念である感情制御を導入する。
実験の結果,ERPDは人格検出の精度とロバスト性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-06-23T11:18:55Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Improving Empathetic Dialogue Generation by Dynamically Infusing
Commonsense Knowledge [39.536604198392375]
共感的な会話では、個人は他人に対する共感を表現する。
これまでの研究は主に、話者の感情を利用して共感的な反応を生み出すことに焦点を当ててきた。
本稿では,コモンセンス知識選択のための適応モジュールを組み込んだ共感応答生成手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:25:12Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - CEM: Commonsense-aware Empathetic Response Generation [31.956147246779423]
本稿では,ユーザ状況に関する情報を引き出すために,コモンセンスを利用した共感応答生成手法を提案する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-09-13T06:55:14Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。