Quantum energy teleportation in phase space quantum mechanics
- URL: http://arxiv.org/abs/2408.02905v1
- Date: Tue, 6 Aug 2024 02:31:29 GMT
- Title: Quantum energy teleportation in phase space quantum mechanics
- Authors: M. M. Sanchez-Cordova, Jasel Berra-Montiel,
- Abstract summary: We investigate the Quantum Energy Teleportation protocol within the phase space formulation of quantum mechanics.
We show that the teleported energy is proportional to the amount of entanglement present in the initial ground state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the Quantum Energy Teleportation protocol within the phase space formulation of quantum mechanics. By employing the Wigner quasi-probability distribution and the star product, we show that the teleported energy is proportional to the amount of entanglement present in the initial ground state. Further, we introduce the Husimi $Q$-function on a Bloch coherent state in order to determine the Wehrl entropy of the system. Finally, the Wherl entropy enable us to compute the consumption of coherence and entanglement throughout the protocol.
Related papers
- Exploring Kondo effect by quantum energy teleportation [0.0]
We consider a quantum energy teleportation (QET) method to replicate the phase diagram of a one-dimensional $XXZ$ spin chain.
The energy supplier and receiver are spatially separated from the point impurity and do not interact directly with it.
We show that changes in the gap spacing of the entanglement spectra align with the locations of peaks in both entanglement entropy and energy, as determined by QET.
arXiv Detail & Related papers (2023-10-24T15:32:54Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Light cones for open quantum systems [5.449283796175883]
We consider Markovian open quantum dynamics (MOQD)
We show that, up to small-probability tails, the supports of quantum states evolving under such dynamics propagate with finite speed in any finite-energy subspace.
arXiv Detail & Related papers (2023-03-15T20:38:04Z) - Quantum bistability in the hyperfine ground state of atoms [0.0]
We show that atoms in an optical cavity can manifest a first-order dissipative phase transition.
These states include hyperfine ground states of atoms and coherent states of electromagnetic field modes.
arXiv Detail & Related papers (2023-03-03T12:42:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - The role of quantum coherence in energy fluctuations [0.0]
We discuss the role of quantum coherence in the energy fluctuations of open quantum systems.
We introduce a protocol to define the statistics of energy changes as a function of energy measurements performed only after the evolution of the initial state.
We demonstrate our findings by running an experiment on the IBM Quantum Experience superconducting qubit platform.
arXiv Detail & Related papers (2021-06-11T15:32:24Z) - Quantifying quantum coherence in polariton condensates [0.23746609573239752]
We investigate quantum features of an interacting light-matter system from a multidisciplinary perspective.
We quantify the amount of quantum coherence that results from the quantum superposition of Fock states.
arXiv Detail & Related papers (2021-03-04T13:47:45Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.