Bottom-up Fabrication of 2D Rydberg Exciton Arrays in Cuprous Oxide
- URL: http://arxiv.org/abs/2408.03880v1
- Date: Wed, 7 Aug 2024 16:28:59 GMT
- Title: Bottom-up Fabrication of 2D Rydberg Exciton Arrays in Cuprous Oxide
- Authors: Kinjol Barua, Samuel Peana, Arya Deepak Keni, Vahagn Mkhitaryan, Vladimir Shalaev, Yong P. Chen, Alexandra Boltasseva, Hadiseh Alaeian,
- Abstract summary: Cuprous oxide ($textCu_2textO$) has emerged as a promising medium for scalable quantum technology.
This study demonstrates the bottom-up fabrication of site-selective arrays of $textCu_2textO$ microparticles.
- Score: 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solid-state platforms provide exceptional opportunities for advancing on-chip quantum technologies by enhancing interaction strengths through coupling, scalability, and robustness. Cuprous oxide ($\text{Cu}_{2}\text{O}$) has recently emerged as a promising medium for scalable quantum technology due to its high-lying Rydberg excitonic states, akin to those in hydrogen atoms. To harness these nonlinearities for quantum applications, the confinement dimensions must match the Rydberg blockade size, which can reach several microns in $\text{Cu}_{2}\text{O}$. Using a CMOS-compatible growth technique, this study demonstrates the bottom-up fabrication of site-selective arrays of $\text{Cu}_{2}\text{O}$ microparticles. We observed Rydberg excitons up to the principal quantum number $n$=5 within these $\text{Cu}_{2}\text{O}$ arrays on a quartz substrate and analyzed the spatial variation of their spectrum across the array, showing robustness and reproducibility on a large chip. These results lay the groundwork for the deterministic growth of $\text{Cu}_{2}\text{O}$ around photonic structures, enabling substantial light-matter interaction on integrated photonic platforms and paving the way for scalable, on-chip quantum devices.
Related papers
- Supersolidity in Rydberg tweezer arrays [0.41232474244672235]
Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former.
For repulsive interactions, we predict the existence of a robust supersolid phase in current Rydberg tweezer experiments.
arXiv Detail & Related papers (2024-07-17T17:21:30Z) - Quadrupole coupling of circular Rydberg qubits to inner shell excitations [0.0]
Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing.
We report the implementation of electric quadrupole coupling between the metastable 4D$_3/2$ level and a very high-$n$ ($n=79$) circular Rydberg qubit.
Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits.
arXiv Detail & Related papers (2024-05-30T20:54:35Z) - Resonance energies and linewidths of Rydberg excitons in Cu$_2$O quantum wells [0.0]
Rydberg excitons are the solid-state analog of Rydberg atoms and can easily reach a large size in the region of $mu$m.
The fabrication of quantum well-like structures in the crystal leads to quantum confinement effects.
arXiv Detail & Related papers (2024-04-04T19:53:18Z) - Quantum dimer models with Rydberg gadgets [0.0]
Rydberg blockade mechanism is an important ingredient in quantum simulators based on neutral atom arrays.
We propose a method to transform the underlying Rydberg blockade into more general constraints.
We show that these states can be dynamically prepared with high fidelity.
arXiv Detail & Related papers (2024-02-16T12:54:06Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Highly-Excited Rydberg Excitons in Synthetic Thin-Film Cuprous Oxide [0.0]
Cuprous oxide (Cu$$O) has been proposed as a promising solid-state host for excitonic Rydberg states with large principal quantum numbers.
We present spectroscopic and photoluminescence studies of Rydberg excitons in synthetic Cu$$O grown on a transparent substrate.
These results open a new portal to scalable and integrable on-chip Rydberg-based quantum devices.
arXiv Detail & Related papers (2022-10-28T21:50:20Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.