論文の概要: Mathematical Programming For Adaptive Experiments
- arxiv url: http://arxiv.org/abs/2408.04570v1
- Date: Thu, 8 Aug 2024 16:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:08:24.408813
- Title: Mathematical Programming For Adaptive Experiments
- Title(参考訳): 適応実験のための数学的プログラミング
- Authors: Ethan Che, Daniel R. Jiang, Hongseok Namkoong, Jimmy Wang,
- Abstract要約: 本稿では, 適応実験の数学的プログラミング的視点を, 幅広い目的, 制約, 統計的手順を柔軟に組み込むことができる。
我々は,非定常性,パーソナライゼーション,多目的性,制約といった実践的な課題に追随したベンチマークの枠組みを評価する。
- 参考スコア(独自算出の注目度): 7.948144726705323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive experimentation can significantly improve statistical power, but standard algorithms overlook important practical issues including batched and delayed feedback, personalization, non-stationarity, multiple objectives, and constraints. To address these issues, the current algorithm design paradigm crafts tailored methods for each problem instance. Since it is infeasible to devise novel algorithms for every real-world instance, practitioners often have to resort to suboptimal approximations that do not address all of their challenges. Moving away from developing bespoke algorithms for each setting, we present a mathematical programming view of adaptive experimentation that can flexibly incorporate a wide range of objectives, constraints, and statistical procedures. By formulating a dynamic program in the batched limit, our modeling framework enables the use of scalable optimization methods (e.g., SGD and auto-differentiation) to solve for treatment allocations. We evaluate our framework on benchmarks modeled after practical challenges such as non-stationarity, personalization, multi-objectives, and constraints. Unlike bespoke algorithms such as modified variants of Thomson sampling, our mathematical programming approach provides remarkably robust performance across instances.
- Abstract(参考訳): 適応的な実験は統計的パワーを大幅に向上させるが、標準的なアルゴリズムはバッチ化や遅延したフィードバック、パーソナライゼーション、非定常性、複数の目的、制約といった重要な実用上の問題を見落としている。
これらの問題に対処するため、現在のアルゴリズム設計パラダイムでは、各問題インスタンス用に調整されたメソッドが作成されている。
現実のすべてのインスタンスに新しいアルゴリズムを考案することは不可能であるため、実践者は、全ての課題に対処しない最適以下の近似に頼らなければならないことが多い。
各設定に対するベスポークアルゴリズムの開発から離れ、幅広い目的、制約、統計的手順を柔軟に組み込むことができる適応実験の数学的プログラミングの視点を示す。
動的プログラムをバッチ制限で定式化することにより,拡張性のある最適化手法(例えば,SGD,自動微分)を処理割り当てに利用することができる。
我々は,非定常性,パーソナライゼーション,多目的性,制約といった実践的な課題に追随したベンチマークの枠組みを評価する。
トムソンサンプリングの修正版のようなベスポークアルゴリズムとは異なり、我々の数学的プログラミングアプローチはインスタンス間で非常に堅牢な性能を提供する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
逐次的に収集したデータの実験を適応的に選択するアクティブシーケンシャル推定の問題について検討する。
目標は、より正確なモデル推定のための実験選択ルールを設計することである。
そこで本稿では,グリーディ実験の選択手法のクラスを提案し,最大可能性の統計的解析を行う。
論文 参考訳(メタデータ) (2024-02-13T17:09:29Z) - Adaptive Experimentation at Scale: A Computational Framework for
Flexible Batches [7.390918770007728]
結果がバッチで測定される少数の実測を含む実例によって動機付けられ,適応駆動型実験フレームワークを開発した。
我々の主な観察は、統計的推論において普遍的な正規近似は適応アルゴリズムの設計を導くことができることである。
論文 参考訳(メタデータ) (2023-03-21T04:17:03Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - An Adaptive Incremental Gradient Method With Support for Non-Euclidean
Norms [19.41328109094503]
そこで本研究では,SAGAアルゴリズムの適応型を新たにいくつか提案し,解析する。
一般的な設定の下で収束保証を確立する。
我々は、非ユークリッドノルムをサポートするためにSAGAの分析を改善した。
論文 参考訳(メタデータ) (2022-04-28T09:43:07Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
接着プロセスに最適なプロセスパラメータを見つけることは困難である。
遺伝的アルゴリズムのような伝統的な進化的アプローチは、その問題を解決するのに不適である。
本研究では,目的関数と制約関数をエミュレートするために,特定の機械学習手法をうまく応用した。
論文 参考訳(メタデータ) (2021-12-16T10:14:39Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
SPO+や直接最適化のような決定に焦点をあてた予測手法が、このギャップを埋めるために提案されている。
本稿では,実世界の線形および半定値負の二次計画問題に対して,解析的に微分可能な主観的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-22T17:09:57Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
本稿では,スムーズな制約付き最適化のための一階法について紹介する。
提案手法の2つの特徴は、実現可能な集合全体の投影や最適化が避けられることである。
結果として得られるアルゴリズムの手順は、制約が非線形であっても簡単に実装できる。
論文 参考訳(メタデータ) (2021-07-17T11:45:13Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - Multiple Plans are Better than One: Diverse Stochastic Planning [26.887796946596243]
計画上の問題では、望ましい仕様を完全にモデル化することはしばしば困難です。
特に、人間とロボットの相互作用において、そのような困難は、プライベートまたはモデルに複雑である人間の好みによって生じる可能性がある。
我々は、最適に近い代表行動の集合を生成することを目的とした、多種多様な計画と呼ばれる問題を定式化する。
論文 参考訳(メタデータ) (2020-12-31T07:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。