論文の概要: Citekit: A Modular Toolkit for Large Language Model Citation Generation
- arxiv url: http://arxiv.org/abs/2408.04662v1
- Date: Tue, 6 Aug 2024 02:13:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 17:39:53.784407
- Title: Citekit: A Modular Toolkit for Large Language Model Citation Generation
- Title(参考訳): Citekit: 大規模言語モデルCitation生成のためのモジュールツールキット
- Authors: Jiajun Shen, Tong Zhou, Suifeng Zhao, Yubo Chen, Kang Liu,
- Abstract要約: 大規模言語モデル(LLM)は質問応答(QA)タスクで引用を生成する。
現在、異なる引用生成方法を標準化し、適切に比較するための統一されたフレームワークは存在しない。
既存の引用生成手法の実装と評価を容易にするために設計されたオープンソースのモジュール型ツールキットであるnameを紹介する。
- 参考スコア(独自算出の注目度): 20.509394248001723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling Large Language Models (LLMs) to generate citations in Question-Answering (QA) tasks is an emerging paradigm aimed at enhancing the verifiability of their responses when LLMs are utilizing external references to generate an answer. However, there is currently no unified framework to standardize and fairly compare different citation generation methods, leading to difficulties in reproducing different methods and a comprehensive assessment. To cope with the problems above, we introduce \name, an open-source and modular toolkit designed to facilitate the implementation and evaluation of existing citation generation methods, while also fostering the development of new approaches to improve citation quality in LLM outputs. This tool is highly extensible, allowing users to utilize 4 main modules and 14 components to construct a pipeline, evaluating an existing method or innovative designs. Our experiments with two state-of-the-art LLMs and 11 citation generation baselines demonstrate varying strengths of different modules in answer accuracy and citation quality improvement, as well as the challenge of enhancing granularity. Based on our analysis of the effectiveness of components, we propose a new method, self-RAG \snippet, obtaining a balanced answer accuracy and citation quality. Citekit is released at https://github.com/SjJ1017/Citekit.
- Abstract(参考訳): 質問応答(QA)タスクにおける引用を生成するためのLLM(Large Language Models)は,LCMが外部参照を利用して回答を生成する場合の応答の妥当性を高めることを目的とした,新たなパラダイムである。
しかし、現在、異なる引用生成手法を標準化し、適切に比較するための統一されたフレームワークが存在しないため、異なる方法の再現や包括的な評価が困難である。
上記の問題に対処するため,既存の引用生成手法の実装と評価を容易にするオープンソースかつモジュール化されたツールキットである \name を導入するとともに,LCM 出力における引用品質向上のための新しいアプローチの開発を促進する。
このツールは拡張性が高く、4つのメインモジュールと14のコンポーネントを使用してパイプラインを構築し、既存のメソッドや革新的な設計を評価することができる。
現状のLLMと11の励振生成ベースラインを用いた実験では,解答精度と励振品質の改善,および粒度向上の課題として,異なるモジュールの強さが示された。
本稿では, 成分の有効性を解析し, 解答精度と引用品質のバランスをとる自己RAG \snippetを提案する。
Citekitはhttps://github.com/SjJ1017/Citekit.comで公開されている。
関連論文リスト
- On the Capacity of Citation Generation by Large Language Models [38.47160164251295]
Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)における「ハロシン化」問題を緩和するための有望な方法として現れる。
論文 参考訳(メタデータ) (2024-10-15T03:04:26Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAGは大規模言語モデル(LLM)を強化するために広く採用されている。
分散テキスト生成(ATG)が注目され、RAGにおけるモデルの応答をサポートするための引用を提供する。
本稿では,ReClaim(Refer & Claim)と呼ばれる詳細なATG手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:47:47Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化(英: Uncertainty Quantification、UQ)は、機械学習(ML)アプリケーションにおいて重要なコンポーネントである。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、9つのタスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も有望なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Learning to Generate Answers with Citations via Factual Consistency Models [28.716998866121923]
大型言語モデル(LLM)は、ミッションクリティカルな状況においてその信頼性を阻害する。
本稿では,事実整合性モデル(FCM)を利用した弱教師付き微調整法を提案する。
集中学習は目的に統合され、ファインチューニングプロセスが現実の単位トークンを強調するように指示される。
論文 参考訳(メタデータ) (2024-06-19T00:40:19Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
本稿では,検索した文の応答を基底にして,引用を提供することにより,大規模言語モデル(LLM)の改善に焦点を当てる。
我々は、全体論的観点から基盤を改善する新しいフレームワーク AGREE を提案する。
我々のフレームワークは, LLMを調整し, その要求を自己評価し, 検索した文書に正確な引用を提供する。
論文 参考訳(メタデータ) (2023-11-16T03:22:25Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
我々は,大規模な言語モデルによって生成された応答の引用,正しさ,および流布性を評価することができる評論家モデルを訓練するためのデータセットを構築した。
本稿では,批判モデルを利用して生成したテキストの異質な側面をリアルタイムにフィードバックする自動フィードバック機構を提案する。
提案手法の有効性を実験的に検証し,4%の精度向上とMAUVE測定値の約8%の精度向上を図った。
論文 参考訳(メタデータ) (2023-09-08T09:39:53Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
大規模言語モデル (LLM) は情報検索のツールとして広く使われている。
我々の目的は、LLMが引用文を生成できるようにし、その事実の正しさと妥当性を向上させることである。
自動LLMのCitation Evaluationのための最初のベンチマークであるALCEを提案する。
論文 参考訳(メタデータ) (2023-05-24T01:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。