論文の概要: AI and Machine Learning Driven Indoor Localization and Navigation with Mobile Embedded Systems
- arxiv url: http://arxiv.org/abs/2408.04797v1
- Date: Fri, 9 Aug 2024 00:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:58:32.983719
- Title: AI and Machine Learning Driven Indoor Localization and Navigation with Mobile Embedded Systems
- Title(参考訳): モバイル組込みシステムによるAIと機械学習による屋内ローカライゼーションとナビゲーション
- Authors: Sudeep Pasricha,
- Abstract要約: 本稿では,最先端の屋内ナビゲーションソリューションに直面する課題について概説する。
次に、モバイル組み込みシステムにデプロイされるAIアルゴリズムがこれらの課題を克服する方法について説明する。
- 参考スコア(独自算出の注目度): 3.943289808718775
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Indoor navigation is a foundational technology to assist the tracking and localization of humans, autonomous vehicles, drones, and robots in indoor spaces. Due to the lack of penetration of GPS signals in buildings, subterranean locales, and dense urban environments, indoor navigation solutions typically make use of ubiquitous wireless signals (e.g., WiFi) and sensors in mobile embedded systems to perform tracking and localization. This article provides an overview of the many challenges facing state-of-the-art indoor navigation solutions, and then describes how AI algorithms deployed on mobile embedded systems can overcome these challenges.
- Abstract(参考訳): 室内ナビゲーションは、人間、自動運転車、ドローン、ロボットの屋内での追跡と位置決めを支援する基礎技術である。
建物、地下の地域、密集した都市環境におけるGPS信号の浸透が不足しているため、屋内ナビゲーションソリューションは通常、モバイル組み込みシステムにおいてユビキタスな無線信号(例えばWiFi)とセンサーを使用して追跡とローカライゼーションを行う。
この記事では、最先端の屋内ナビゲーションソリューションに直面する多くの課題の概要と、モバイル組み込みシステムにデプロイされたAIアルゴリズムがこれらの課題を克服する方法について説明する。
関連論文リスト
- Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
未知の環境で障害物のない経路を見つけることは、視覚障害者や自律ロボットにとって大きなナビゲーション問題である。
コンピュータビジョンシステムに基づく新しいデバイスは、障害のある人が安全な環境で未知の環境でナビゲートすることの難しさを克服するのに役立つ。
本研究では,視覚障害者のためのナビゲーションシステムの構築につながるセンサとアルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-01-30T14:38:43Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Real-time Vision-based Navigation for a Robot in an Indoor Environment [0.0]
このシステムは、視覚に基づく技術と高度な経路計画アルゴリズムを利用して、障害物を避けながらロボットが目的地に向かって移動できるようにする。
この知見は、屋内ロボットナビゲーションの進歩に寄与し、リアルタイムで自律的なナビゲーションのための視覚ベースの技術の可能性を示している。
論文 参考訳(メタデータ) (2023-07-02T21:01:56Z) - Autonomous Systems: Autonomous Systems: Indoor Drone Navigation [0.0]
このシステムは、屋内環境で自律走行できるシミュレーションクワッドコプターを作成する。
目標は、ROS用のスラムツールボックスと、Nav2ナビゲーションシステムフレームワークを使用して、シミュレートされたドローンを構築することだ。
論文 参考訳(メタデータ) (2023-04-18T10:40:00Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization
with Deep Learning [4.657486836910778]
WiFi指紋認証による屋内のローカライゼーションは、この需要を満たす最も有望な方法の1つだ。
そこで我々は,CHISELと呼ばれる圧縮認識・高精度深層学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-02T17:00:01Z) - Towards bio-inspired unsupervised representation learning for indoor
aerial navigation [4.26712082692017]
本研究では,生物にインスパイアされた深層学習アルゴリズムによる同時位置決めとマッピング(SLAM)とそのドローンナビゲーションシステムへの応用について述べる。
本稿では,低次元潜在状態記述子を出力し,知覚的エイリアスに対する感度を軽減し,高効率な組込みハードウェアの開発を行う教師なし表現学習手法を提案する。
設計したアルゴリズムは,室内の倉庫環境において収集されたデータセットに基づいて評価され,最初の結果はロバストな屋内航法の実現可能性を示している。
論文 参考訳(メタデータ) (2021-06-17T08:42:38Z) - Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband [1.6799377888527687]
移動障害や非視線発生はノイズや信頼性の低い信号を生成する。
深部強化学習(RL)で学習した電力効率のよい局所プランナーが,ノイズショートレンジ誘導システムの完全解法として頑健かつ弾力性を持つことを示す。
この結果から, 計算効率のよいエンドツーエンドポリシは, 堅牢でスケーラブルで, 最先端の低コストナビゲーションシステムを実現することができることがわかった。
論文 参考訳(メタデータ) (2020-11-18T12:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。