Generalized Encouragement-Based Instrumental Variables for Counterfactual Regression
- URL: http://arxiv.org/abs/2408.05428v1
- Date: Sat, 10 Aug 2024 04:21:04 GMT
- Title: Generalized Encouragement-Based Instrumental Variables for Counterfactual Regression
- Authors: Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Xiangwei Chen, Zexu Sun, Fei Wu, Kun Zhang,
- Abstract summary: This paper introduces novel theories and algorithms for identifying the Conditional Average Treatment Effect (CATE) using variations in encouragement.
By leveraging both observational and encouragement data, we propose a generalized IV estimator, named Encouragement-based Counterfactual Regression (EnCounteR) to effectively estimate the causal effects.
- Score: 33.869488994843394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In causal inference, encouragement designs (EDs) are widely used to analyze causal effects, when randomized controlled trials (RCTs) are impractical or compliance to treatment cannot be perfectly enforced. Unlike RCTs, which directly allocate treatments, EDs randomly assign encouragement policies that positively motivate individuals to engage in a specific treatment. These random encouragements act as instrumental variables (IVs), facilitating the identification of causal effects through leveraging exogenous perturbations in discrete treatment scenarios. However, real-world applications of encouragement designs often face challenges such as incomplete randomization, limited experimental data, and significantly fewer encouragements compared to treatments, hindering precise causal effect estimation. To address this, this paper introduces novel theories and algorithms for identifying the Conditional Average Treatment Effect (CATE) using variations in encouragement. Further, by leveraging both observational and encouragement data, we propose a generalized IV estimator, named Encouragement-based Counterfactual Regression (EnCounteR), to effectively estimate the causal effects. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of EnCounteR over existing methods.
Related papers
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
We present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves.
We show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility.
arXiv Detail & Related papers (2024-10-21T07:24:26Z) - Estimating Heterogeneous Treatment Effects on Survival Outcomes Using Counterfactual Censoring Unbiased Transformations [1.9785304593748243]
Methods for estimating heterogeneous treatment effects (HTE) from observational data have largely focused on continuous or binary outcomes.
We develop censoring unbiased transformations (CUTs) for survival outcomes both with and without competing risks.
arXiv Detail & Related papers (2024-01-20T16:17:06Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing.
We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes.
We address the challenges posed by time-varying effects and unobserved adjustment variables.
arXiv Detail & Related papers (2023-10-16T16:32:35Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach [0.0]
Dynamic Treatment Regimes (DTRs) are widely studied to formalize this process.
We develop Reinforcement Learning methods to efficiently learn optimal treatment regimes.
arXiv Detail & Related papers (2021-12-08T20:22:04Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
arXiv Detail & Related papers (2020-08-17T01:02:14Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.