論文の概要: Multi-Agent Planning Using Visual Language Models
- arxiv url: http://arxiv.org/abs/2408.05478v2
- Date: Sun, 29 Dec 2024 12:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:00:21.696630
- Title: Multi-Agent Planning Using Visual Language Models
- Title(参考訳): 視覚言語モデルを用いたマルチエージェント計画
- Authors: Michele Brienza, Francesco Argenziano, Vincenzo Suriani, Domenico D. Bloisi, Daniele Nardi,
- Abstract要約: 大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 2.2369578015657954
- License:
- Abstract: Large Language Models (LLMs) and Visual Language Models (VLMs) are attracting increasing interest due to their improving performance and applications across various domains and tasks. However, LLMs and VLMs can produce erroneous results, especially when a deep understanding of the problem domain is required. For instance, when planning and perception are needed simultaneously, these models often struggle because of difficulties in merging multi-modal information. To address this issue, fine-tuned models are typically employed and trained on specialized data structures representing the environment. This approach has limited effectiveness, as it can overly complicate the context for processing. In this paper, we propose a multi-agent architecture for embodied task planning that operates without the need for specific data structures as input. Instead, it uses a single image of the environment, handling free-form domains by leveraging commonsense knowledge. We also introduce a novel, fully automatic evaluation procedure, PG2S, designed to better assess the quality of a plan. We validated our approach using the widely recognized ALFRED dataset, comparing PG2S to the existing KAS metric to further evaluate the quality of the generated plans.
- Abstract(参考訳): 大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
しかし、LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
例えば、計画と知覚が同時に必要となる場合、これらのモデルは、マルチモーダル情報をマージすることが困難であるため、しばしば苦労する。
この問題に対処するために、微調整されたモデルは通常、環境を表す特別なデータ構造に基づいて採用され、訓練される。
このアプローチは、処理のコンテキストを過度に複雑化するので、効果が制限される。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
代わりに、環境の単一のイメージを使用し、コモンセンスの知識を活用することで、自由形式のドメインを扱う。
また,計画の質をよりよく評価するための新しい完全自動評価手法PG2Sを導入する。
我々は広く認識されているALFREDデータセットを用いて、PG2Sを既存のKASメトリックと比較し、生成した計画の品質をさらに評価した。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? [87.71321254733384]
大規模言語モデル(LLM)は、特定の計画問題に適した計画手法を生成することができる。
LLMは、いくつかの標準IPCドメインで最先端のパフォーマンスを達成することができる。
これらの結果がパラダイムシフトを意味するのか、既存の計画手法をどのように補完するかについて議論する。
論文 参考訳(メタデータ) (2025-01-30T22:21:12Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning [4.762390044282733]
大規模言語モデル(LLM)は、様々な複雑なコード生成タスクにおいて、その例外的な性能を実証している。
このような要求を緩和するために、モデルプルーニング技術は、パラメータが著しく少ないよりコンパクトなモデルを作成するために使用される。
本研究では,非構造化プルーニングによる符号化特化サブモデルの効率的な導出について検討する。
論文 参考訳(メタデータ) (2025-01-09T14:00:01Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning [10.704716790096498]
大規模言語モデル(LLM)は、技術やシステム設計の推進によって達成された、目覚ましいタスク解決能力を示している。
本稿では,LLMの計画能力に及ぼす微調整の影響について検討する。
計画領域におけるファインチューニングのサンプル効率を向上させるために,MDFT(Maximum Diversity Fine-Tuning)戦略を提案する。
論文 参考訳(メタデータ) (2024-06-15T03:06:14Z) - Dial-insight: Fine-tuning Large Language Models with High-Quality Domain-Specific Data Preventing Capability Collapse [4.98050508891467]
高品質なデータを得るために設計された生産プロンプトを構築するための2段階のアプローチを提案する。
この方法は、幅広いタスクを包含し、多種多様な表現を示す多様なプロンプトの生成を含む。
生成したラベルデータの整合性を確保するため,コスト効率,多次元品質評価フレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-14T08:27:32Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
このフレームワークは、モデル定義、クエリ、パラメータ学習、モデル評価、データ監視、決定レコメンデーション、Webポータルのサービスをサポートする。
さらに、MTSAデータモデルとクエリ言語を拡張して、学習、監視、レコメンデーションのサービスにおいて、この種の問題をサポートする。
論文 参考訳(メタデータ) (2022-10-18T16:56:17Z) - An Empirical Evaluation of Flow Based Programming in the Machine
Learning Deployment Context [11.028123436097616]
データ指向アーキテクチャ(DOA)は,課題に対処する上で,データサイエンティストやソフトウェア開発者を支援する,新たなアプローチである。
本稿では,フローベースプログラミング(FBP)をDOAアプリケーション作成のパラダイムとして考える。
我々は、典型的なデータサイエンスプロジェクトを表す4つのアプリケーション上で、MLデプロイメントの文脈において、FBPを実証的に評価する。
論文 参考訳(メタデータ) (2022-04-27T09:08:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。