On zero-shot learning in neural state estimation of power distribution systems
- URL: http://arxiv.org/abs/2408.05787v2
- Date: Fri, 30 May 2025 18:41:19 GMT
- Title: On zero-shot learning in neural state estimation of power distribution systems
- Authors: Aleksandr Berezin, Stephan Balduin, Thomas Oberließen, Sebastian Peter, Eric MSP Veith,
- Abstract summary: This paper addresses the challenge of neural state estimation in power distribution systems.<n>We identify graph neural networks as the most promising class of models for this use case.<n>We propose data augmentations to improve performance and conduct a comprehensive grid search of different model configurations for common zero-shot learning scenarios.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of neural state estimation in power distribution systems. We identified a research gap in the current state of the art, which lies in the inability of models to adapt to changes in the power grid, such as loss of sensors and branch switching, in a zero-shot fashion. Based on the literature, we identified graph neural networks as the most promising class of models for this use case. Our experiments confirm their robustness to some grid changes and also show that a deeper network does not always perform better. We propose data augmentations to improve performance and conduct a comprehensive grid search of different model configurations for common zero-shot learning scenarios.
Related papers
- Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning [1.03590082373586]
We develop a deep neural model that integrates multi-modal learning with domain adaptation techniques for classification.<n>Our model processes data from diverse sources in a sequential cyclic manner, allowing it to learn from multiple datasets and adapt to varying feature spaces.<n> Experimental results demonstrate that our proposed model significantly outperforms baseline neural models in classifying network intrusions.
arXiv Detail & Related papers (2025-08-05T14:46:03Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks [5.4894758104028245]
We propose a new framework combining heterogeneous graph neural network with deep reinforcement learning to automatically construct the movement path of the sink.
We design ten types of static and dynamic maps to simulate different wireless sensor networks in the real world.
Our approach consistently outperforms the existing methods on all types of maps.
arXiv Detail & Related papers (2024-04-11T13:09:11Z) - Grey-informed neural network for time-series forecasting [5.640118517120757]
This study suggests the implementation of a grey-informed neural network (GINN)
GINN ensures that the output of the neural network follows the differential equation model of the grey system, improving interpretability.
Our proposed model has been observed to uncover underlying patterns in the real world and produce reliable forecasts based on empirical data.
arXiv Detail & Related papers (2024-03-22T08:17:00Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Asymptotic-Preserving Neural Networks for multiscale hyperbolic models
of epidemic spread [0.0]
In many circumstances, the spatial propagation of an infectious disease is characterized by movements of individuals at different scales governed by multiscale PDEs.
In presence of multiple scales, a direct application of PINNs generally leads to poor results due to the multiscale nature of the differential model in the loss function of the neural network.
We consider a new class of AP Neural Networks (APNNs) for multiscale hyperbolic transport models of epidemic spread.
arXiv Detail & Related papers (2022-06-25T11:25:47Z) - Standalone Neural ODEs with Sensitivity Analysis [5.565364597145569]
This paper presents a continuous-depth neural ODE model capable of describing a full deep neural network.
We present a general formulation of the neural sensitivity problem and show how it is used in the NCG training.
Our evaluations demonstrate that our novel formulations lead to increased robustness and performance as compared to ResNet models.
arXiv Detail & Related papers (2022-05-27T12:16:53Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
We exploit recent results in quantifying the robustness of neural networks to construct and tune a model-based anomaly detector.
In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation.
arXiv Detail & Related papers (2021-03-22T19:23:08Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - From Boltzmann Machines to Neural Networks and Back Again [31.613544605376624]
We give new results for learning Restricted Boltzmann Machines, probably the most well-studied class of latent variable models.
Our results are based on new connections to learning two-layer neural networks under $ell_infty$ bounded input.
We then give an algorithm for learning a natural class of supervised RBMs with better runtime than what is possible for its related class of networks without distributional assumptions.
arXiv Detail & Related papers (2020-07-25T00:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.