Scalable recommender system based on factor analysis
- URL: http://arxiv.org/abs/2408.05896v1
- Date: Mon, 12 Aug 2024 02:18:42 GMT
- Title: Scalable recommender system based on factor analysis
- Authors: Disha Ghandwani, Trevor Hastie,
- Abstract summary: This paper explores statistical models for recommender systems, focusing on crossed random effects models and factor analysis.
We extend the crossed random effects model to include random slopes, enabling the capture of varying covariate effects among users and items.
We also investigate the use of factor analysis in recommender systems, particularly for settings with incomplete data.
- Score: 43.859366451674155
- License:
- Abstract: Recommender systems have become crucial in the modern digital landscape, where personalized content, products, and services are essential for enhancing user experience. This paper explores statistical models for recommender systems, focusing on crossed random effects models and factor analysis. We extend the crossed random effects model to include random slopes, enabling the capture of varying covariate effects among users and items. Additionally, we investigate the use of factor analysis in recommender systems, particularly for settings with incomplete data. The paper also discusses scalable solutions using the Expectation Maximization (EM) and variational EM algorithms for parameter estimation, highlighting the application of these models to predict user-item interactions effectively.
Related papers
- A Recommendation Model Utilizing Separation Embedding and Self-Attention for Feature Mining [7.523158123940574]
Recommendation systems provide users with content that meets their needs.
Traditional click-through rate prediction and TOP-K recommendation mechanisms are unable to meet the recommendations needs.
This paper proposes a recommendations system model based on a separation embedding cross-network.
arXiv Detail & Related papers (2024-10-19T07:49:21Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - Exploring Popularity Bias in Session-based Recommendation [0.6798775532273751]
We extend the analysis to session-based setup and adapted propensity calculation to the unique characteristics of session-based recommendation tasks.
We study the distributions of propensity and different stratification techniques on different datasets and find that propensity-related traits are actually dataset-specific.
arXiv Detail & Related papers (2023-12-13T02:48:35Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
We propose a human-centered interactive HPO approach tailored towards multi-objective machine learning (ML)
Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator.
arXiv Detail & Related papers (2023-09-07T09:22:05Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Out-of-sample scoring and automatic selection of causal estimators [0.0]
We propose novel scoring approaches for both the CATE case and an important subset of instrumental variable problems.
We implement that in an open source package that relies on DoWhy and EconML libraries.
arXiv Detail & Related papers (2022-12-20T08:29:18Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.