論文の概要: Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm
- arxiv url: http://arxiv.org/abs/2408.06368v1
- Date: Mon, 29 Jul 2024 13:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 03:47:26.623685
- Title: Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm
- Title(参考訳): 非変分量子ウォークに基づく最適化アルゴリズムの解析
- Authors: Tavis Bennett, Lyle Noakes, Jingbo B. Wang,
- Abstract要約: 本稿では,多種多様な最適化問題を解くために設計された非変分量子アルゴリズムを詳細に紹介する。
このアルゴリズムは、増幅状態の繰り返しの準備と測定から最適解とほぼ最適解を返す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces in detail a non-variational quantum algorithm designed to solve a wide range of combinatorial optimisation problems, including constrained problems and problems with non-binary variables. The algorithm returns optimal and near-optimal solutions from repeated preparation and measurement of an amplified state. The amplified state is prepared via repeated application of two unitaries; one which phase-shifts solution states dependent on objective function values, and the other which mixes phase-shifted probability amplitudes via a continuous-time quantum walk (CTQW) on a problem-specific mixing graph. The general interference process responsible for amplifying optimal solutions is derived in part from statistical analysis of objective function values as distributed over the mixing graph. The algorithm's versatility is demonstrated through its application to various problems: weighted maxcut, k-means clustering, quadratic assignment, maximum independent set and capacitated facility location. In all cases, efficient circuit implementations of the CTQWs are discussed. A penalty function approach for constrained problems is also introduced, including a method for optimising the penalty function. For each of the considered problems, the algorithm's performance is simulated for a randomly generated problem instance, and in each case, the amplified state produces a globally optimal solution within a small number of iterations.
- Abstract(参考訳): 本稿では、制約問題や非バイナリ変数の問題を含む、幅広い組合せ最適化問題を解くために設計された非変分量子アルゴリズムを詳細に紹介する。
このアルゴリズムは、増幅状態の繰り返しの準備と測定から最適解とほぼ最適解を返す。
増幅状態は、2つのユニタリの繰り返し適用により作成される。一方は、目的関数値に依存する相シフト状態であり、他方は、問題固有の混合グラフ上の連続時間量子ウォーク(CTQW)を介して相シフトした確率振幅を混合する。
最適解を増幅する一般的な干渉過程は、混合グラフ上に分布する目的関数値の統計解析から導かれる。
アルゴリズムの汎用性は、重み付けマックスカット、k平均クラスタリング、二次割り当て、最大独立集合、容量化された施設位置といった様々な問題に適用することで実証される。
いずれの場合も、CTQWの効率的な回路実装について議論する。
ペナルティ関数を最適化する方法を含む制約付き問題に対するペナルティ関数アプローチも導入する。
検討された各問題に対して、アルゴリズムの性能はランダムに生成された問題インスタンスに対してシミュレートされ、それぞれの場合、増幅された状態は少数のイテレーションで大まかな最適解を生成する。
関連論文リスト
- Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
変分量子アルゴリズム、特に変分量子固有解器の変種は最適化(CO)問題に対処するために提案されている。
ベンチマークとしてMax-Cutを用いてCO問題を解く上で,このスケーリング結果がどのような意味を持つのかを数値的に検討する。
論文 参考訳(メタデータ) (2024-08-06T09:57:34Z) - Non-variational Quantum Combinatorial Optimisation [3.6538093004443155]
本稿では,多種多様な最適化問題を解くために,非変分量子アルゴリズムを提案する。
アルゴリズムの汎用性は、様々な問題に適用することで実証される。
各問題インスタンスに対して、アルゴリズムは少数の反復で大域的に最適な解を求める。
論文 参考訳(メタデータ) (2024-04-04T02:36:24Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Quantization-Based Optimization: Alternative Stochastic Approximation of
Global Optimization [0.0]
NP-hard問題における目的関数のエネルギーレベルを定量化するための大域的最適化アルゴリズムを提案する。
数値実験により,提案アルゴリズムはNP-ハード最適化問題の解法において従来の学習法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-08T03:01:45Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
繰り返し改善戦略において量子アニーリングを利用するために,整数最適化問題のイジング定式化を提案する。
基底状態と候補解との重なりがしきい値を超えた場合, 完全に連結されたフェロポッツモデルに対して一階相転移を回避できることを解析的に示す。
論文 参考訳(メタデータ) (2022-11-08T02:12:49Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
非線形一般化ナッシュ均衡問題(NGNEP)における平衡計算の問題を考える。
我々の貢献は、2次ペナルティ法と拡張ラグランジアン法に基づく2つの単純な一階アルゴリズムフレームワークを提供することである。
これらのアルゴリズムに対する漸近的理論的保証を提供する。
論文 参考訳(メタデータ) (2022-04-07T00:11:05Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Two-Stage Stochastic Optimization via Primal-Dual Decomposition and Deep
Unrolling [86.85697555068168]
2段階のアルゴリズム最適化は、様々な工学や科学的応用において重要な役割を果たす。
特に長期変数と短期変数が制約の中で結合されている場合、アルゴリズムは効率的ではない。
PDD-SSCAが既存のソリューションよりも優れたパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-05-05T03:36:00Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。