Enhanced Optimization Strategies to Design an Underactuated Hand Exoskeleton
- URL: http://arxiv.org/abs/2408.07384v1
- Date: Wed, 14 Aug 2024 09:00:49 GMT
- Title: Enhanced Optimization Strategies to Design an Underactuated Hand Exoskeleton
- Authors: Baris Akbas, Huseyin Taner Yuksel, Aleyna Soylemez, Mine Sarac, Fabio Stroppa,
- Abstract summary: This study presents the design process for an underactuated hand exoskeleton (U-HEx)
The optimization relies on a Genetic Algorithm, the Big Bang-Big Crunch Algorithm, and their versions for multi-objective optimization.
- Score: 0.7639610349097473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exoskeletons can boost human strength and provide assistance to individuals with physical disabilities. However, ensuring safety and optimal performance in their design poses substantial challenges. This study presents the design process for an underactuated hand exoskeleton (U-HEx), first including a single objective (maximizing force transmission), then expanding into multi objective (also minimizing torque variance and actuator displacement). The optimization relies on a Genetic Algorithm, the Big Bang-Big Crunch Algorithm, and their versions for multi-objective optimization. Analyses revealed that using Big Bang-Big Crunch provides high and more consistent results in terms of optimality with lower convergence time. In addition, adding more objectives offers a variety of trade-off solutions to the designers, who might later set priorities for the objectives without repeating the process - at the cost of complicating the optimization algorithm and computational burden. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design.
Related papers
- The Impact of Evolutionary Computation on Robotic Design: A Case Study with an Underactuated Hand Exoskeleton [0.7209792639354117]
This study investigates the potential of Evolutionary Computation (EC) methods in robotic design optimization.
EC methods consistently yield more precise and optimal solutions than brute force.
Results show significant improvements in terms of the torque magnitude the device transfers to the user.
arXiv Detail & Related papers (2024-03-23T11:50:20Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Design Optimizer for Planar Soft-Growing Robot Manipulators [1.1888144645004388]
This work presents a novel approach for design optimization of soft-growing robots.
I optimize the kinematic chain of a soft manipulator to reach targets and avoid unnecessary overuse of material and resources.
I tested the proposed method on different tasks to access its optimality, which showed significant performance in solving the problem.
arXiv Detail & Related papers (2023-10-05T08:23:17Z) - ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents [11.449817465618658]
Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent.
This can be challenging when the design space is large.
We propose a multi-fidelity-based exploration strategy to improve the sample efficiency of co-design.
arXiv Detail & Related papers (2023-09-08T02:54:31Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
This article proposes an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II.
The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator.
arXiv Detail & Related papers (2022-06-03T17:13:29Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Accelerating Bayesian Optimization for Biological Sequence Design with
Denoising Autoencoders [28.550684606186884]
We develop a new approach which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head.
We evaluate LaMBO on a small-molecule based on the ZINC dataset and introduce a new large-molecule task targeting fluorescent proteins.
arXiv Detail & Related papers (2022-03-23T21:58:45Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.