Quantum convolutional neural networks for jet images classification
- URL: http://arxiv.org/abs/2408.08701v2
- Date: Wed, 05 Mar 2025 15:51:45 GMT
- Title: Quantum convolutional neural networks for jet images classification
- Authors: Hala Elhag, Tobias Hartung, Karl Jansen, Lento Nagano, Giorgio Menicagli Pirina, Alice Di Tucci,
- Abstract summary: This paper addresses the performance of quantum machine learning in the context of high-energy physics.<n>We use a quantum convolutional neural network (QCNN) for this task and compare its performance with CNN using a classical noiseless simulator.<n>Our results indicate that QCNN with proper setups tend to perform better than their CNN counterparts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, interest in quantum computing has significantly increased, driven by its potential advantages over classical techniques. Quantum machine learning (QML) exemplifies one of the important quantum computing applications that are expected to surpass classical machine learning in a wide range of instances. This paper addresses the performance of QML in the context of high-energy physics (HEP). As an example, we focus on the top-quark tagging, for which classical convolutional neural networks (CNNs) have been effective but fall short in accuracy when dealing with highly energetic jet images. In this paper, we use a quantum convolutional neural network (QCNN) for this task and compare its performance with CNN using a classical noiseless simulator. We compare various setups for the QCNN, varying the convolutional circuit, type of encoding, loss function, and batch sizes. For every quantum setup, we design a similar setup to the corresponding classical model for a fair comparison. Our results indicate that QCNN with proper setups tend to perform better than their CNN counterparts, particularly when the convolution block has a lower number of parameters. For the higher parameter regime, the QCNN circuit was adjusted according to the dimensional expressivity analysis (DEA) to lower the parameter count while preserving its optimal structure. The DEA circuit demonstrated improved results over the comparable classical CNN model.
Related papers
- Multi-Class Quantum Convolutional Neural Networks [2.6422127672474933]
We propose a quantum convolutional neural network (QCNN) for multi-class classification of classical data.
The QCNN is tested on the MNIST dataset with 4, 6, 8 and 10 classes.
arXiv Detail & Related papers (2024-04-19T09:36:48Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - GHN-Q: Parameter Prediction for Unseen Quantized Convolutional
Architectures via Graph Hypernetworks [80.29667394618625]
We conduct the first-ever study exploring the use of graph hypernetworks for predicting parameters of unseen quantized CNN architectures.
We focus on a reduced CNN search space and find that GHN-Q can in fact predict quantization-robust parameters for various 8-bit quantized CNNs.
arXiv Detail & Related papers (2022-08-26T08:00:02Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - Classification of NEQR Processed Classical Images using Quantum Neural
Networks (QNN) [0.0]
This work builds on previous works by the authors and addresses QNN for image classification with Novel Enhanced Quantum Representation of (NEQR)
We build an NEQR model circuit to pre-process the same data and feed the images into the QNN.
Our results showed marginal improvements (only about 5.0%) where the QNN performance with NEQR exceeded the performance of QNN without NEQR.
arXiv Detail & Related papers (2022-03-29T08:05:53Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.