Low temperature decoherence dynamics in molecular spin systems using the Lindblad master equation
- URL: http://arxiv.org/abs/2408.08768v1
- Date: Fri, 16 Aug 2024 14:23:03 GMT
- Title: Low temperature decoherence dynamics in molecular spin systems using the Lindblad master equation
- Authors: Timothy J. Krogmeier, Anthony W. Schlimgen, Kade Head-Marsden,
- Abstract summary: At low temperatures, irreversible loss occurs due to ensemble dynamics facilitated by electronic-nuclear spin interactions.
We develop a combined open quantum systems and electronic structure theory capable of predicting trends in relaxation rates in molecular spin ensembles.
Our theory provides a framework to describe irreversible relaxation effects in molecular spin systems with applications in quantum information science, quantum sensing, molecular spintronics, and other spin systems dominated by spin-spin relaxation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the spin dynamics in low-temperature settings is crucial to designing and optimizing molecular spin systems for use in emerging quantum technologies. At low temperatures, irreversible loss occurs due to ensemble dynamics facilitated by electronic-nuclear spin interactions. We develop a combined open quantum systems and electronic structure theory capable of predicting trends in relaxation rates in molecular spin ensembles. We use the Gorini-Kossakowski-Sudarshan-Lindblad master equation and explicitly include electronic structure information in the decoherence channels. We apply this theory to several molecular systems pertinent to contemporary quantum technologies. Our theory provides a framework to describe irreversible relaxation effects in molecular spin systems with applications in quantum information science, quantum sensing, molecular spintronics, and other spin systems dominated by spin-spin relaxation.
Related papers
- Spin/Phonon Dynamics in Single Molecular Magnets: I. quantum embedding [3.100390591580898]
Single molecular magnets (SMMs) and Metal-Organic Frameworks (MOFs) attract significant interest due to their potential in quantum information processing, scalable quantum computing, and extended lifetimes and coherence times.
The limiting factor in these systems is often the spin dephasing caused by interactions and couplings with the vibrational motions of the molecular framework.
This work introduces a systematic projection/embedding scheme to analyze spin-phonon dynamics in molecular magnets.
arXiv Detail & Related papers (2024-07-10T20:49:34Z) - The origin of chirality induced spin selectivity in photo-induced
electron transfer [0.0]
We propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer.
The proposed mechanism explains how spin polarization emerges in systems where charge transport is dominated by incoherent hopping.
arXiv Detail & Related papers (2021-06-11T18:01:05Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Ab initio Ultrafast Spin Dynamics in Solids [0.7874708385247353]
We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems.
We find that the electron-electron scattering is negligible at room temperature but becomes dominant at low temperatures for spin relaxation in n-type GaAs.
arXiv Detail & Related papers (2020-12-16T02:49:47Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z) - Quantum sensing and control of spin state dynamics in the radical pair
mechanism [0.0]
We analyze the role of a quantum sensor in detecting the spin dynamics of individual radical pairs in the presence of a weak magnetic field.
We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution.
arXiv Detail & Related papers (2020-01-06T12:24:16Z) - Molecule-photon interactions in phononic environments [0.0879626117219674]
Liquid quantum optical systems can interface photons, electronic degrees of freedom, localized mechanical vibrations and phonons.
In particular, the strong vibronic interaction between electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
We take here an open quantum system approach to the non-equilibrium dynamics of molecules embedded in a crystal.
arXiv Detail & Related papers (2019-12-05T15:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.