論文の概要: From Specifications to Prompts: On the Future of Generative LLMs in Requirements Engineering
- arxiv url: http://arxiv.org/abs/2408.09127v1
- Date: Sat, 17 Aug 2024 07:38:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:25:12.451745
- Title: From Specifications to Prompts: On the Future of Generative LLMs in Requirements Engineering
- Title(参考訳): 仕様からプロンプトへ:要求工学における生成LDMの将来
- Authors: Andreas Vogelsang,
- Abstract要約: ジェネレーティブLLMは、要求工学に革命をもたらす可能性がある。
このコラムは、斬新さを探求し、効果的な相互作用のための正確なプロンプトの重要性を紹介している。
- 参考スコア(独自算出の注目度): 2.9499268964032868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative LLMs, such as GPT, have the potential to revolutionize Requirements Engineering (RE) by automating tasks in new ways. This column explores the novelties and introduces the importance of precise prompts for effective interactions. Human evaluation and prompt engineering are essential in leveraging LLM capabilities.
- Abstract(参考訳): GPTのようなジェネレーティブLLMは、タスクを新しい方法で自動化することで、要求工学(RE)に革命をもたらす可能性がある。
このコラムは、斬新さを探求し、効果的な相互作用のための正確なプロンプトの重要性を紹介している。
人間の評価と迅速な工学は、LLMの機能を活用する上で不可欠である。
関連論文リスト
- Exploring LLMs for Verifying Technical System Specifications Against Requirements [41.19948826527649]
知識に基づく要求工学(KBRE)の分野は、システム要件の活用、検証、管理を支援する知識を提供することによって、技術者を支援することを目的としている。
大規模言語モデル(LLM)の出現はKBREの分野で新たな機会を開く。
本研究は, LLMの要件検証における可能性について実験的に検討する。
論文 参考訳(メタデータ) (2024-11-18T13:59:29Z) - What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs [26.398086645901742]
本稿では,要求指向型プロンプトエンジニアリング(ROPE)について紹介する。
30名の初級者を対象にした研究では,要求重視の訓練が初級者の性能を2倍に向上させ,従来のプロンプトエンジニアリングトレーニングと即時最適化を著しく上回った。
我々の研究は、人間とLLMの協調的なプロンプトにおいて、より効果的なタスクデリゲーションの道を開く。
論文 参考訳(メタデータ) (2024-09-13T12:34:14Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline [2.6644624823848426]
大規模言語モデル(LLM)は、要求工学(RE)タスクを自動化するための基盤となる。
本章は、LLMに関する本質的な知識を読者に提供することを目的としている。
学生、研究者、実践者が特定の目的に対処するためにLLMを活用するための包括的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-02-21T14:00:52Z) - A Survey on Prompting Techniques in LLMs [0.0]
自己回帰型大規模言語モデルは自然言語処理のランドスケープに変化をもたらした。
本研究は,既存の文献の分類手法について紹介し,この分類法に基づく簡潔な調査を行う。
我々は、将来の研究の方向性として役立つ自己回帰型LSMの推進という領域において、いくつかの未解決の問題を特定した。
論文 参考訳(メタデータ) (2023-11-28T17:56:34Z) - Prompts Matter: Insights and Strategies for Prompt Engineering in
Automated Software Traceability [45.235173351109374]
大規模言語モデル(LLM)は、自動化トレーサビリティに革命をもたらす可能性がある。
本稿では,LLMからリンク予測を抽出するプロセスについて検討する。
論文 参考訳(メタデータ) (2023-08-01T01:56:22Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z) - Just Tell Me: Prompt Engineering in Business Process Management [63.08166397142146]
GPT-3や他の言語モデル(LM)は、様々な自然言語処理(NLP)タスクに効果的に対処できる。
私たちは、迅速なエンジニアリングは、BPM研究にLMの能力をもたらすことができると論じています。
論文 参考訳(メタデータ) (2023-04-14T14:55:19Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。