論文の概要: Parallel Sampling via Counting
- arxiv url: http://arxiv.org/abs/2408.09442v1
- Date: Sun, 18 Aug 2024 11:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:40:30.729984
- Title: Parallel Sampling via Counting
- Title(参考訳): カウントによる並列サンプリング
- Authors: Nima Anari, Ruiquan Gao, Aviad Rubinstein,
- Abstract要約: 任意の分布からのサンプリングを高速化するために並列化を用いる方法を示す。
我々のアルゴリズムは、$O(n2/3cdot operatornamepolylog(n,q))$ parallel timeである。
この結果は自己回帰モデルにおけるサンプリングに影響を及ぼす。
- 参考スコア(独自算出の注目度): 3.6854430278041264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how to use parallelization to speed up sampling from an arbitrary distribution $\mu$ on a product space $[q]^n$, given oracle access to counting queries: $\mathbb{P}_{X\sim \mu}[X_S=\sigma_S]$ for any $S\subseteq [n]$ and $\sigma_S \in [q]^S$. Our algorithm takes $O({n^{2/3}\cdot \operatorname{polylog}(n,q)})$ parallel time, to the best of our knowledge, the first sublinear in $n$ runtime for arbitrary distributions. Our results have implications for sampling in autoregressive models. Our algorithm directly works with an equivalent oracle that answers conditional marginal queries $\mathbb{P}_{X\sim \mu}[X_i=\sigma_i\;\vert\; X_S=\sigma_S]$, whose role is played by a trained neural network in autoregressive models. This suggests a roughly $n^{1/3}$-factor speedup is possible for sampling in any-order autoregressive models. We complement our positive result by showing a lower bound of $\widetilde{\Omega}(n^{1/3})$ for the runtime of any parallel sampling algorithm making at most $\operatorname{poly}(n)$ queries to the counting oracle, even for $q=2$.
- Abstract(参考訳): 任意の分布からサンプリングを高速化するために並列化を用いる方法を示す: $[q]^n$, given oracle access to counting query: $\mathbb{P}_{X\sim \mu}[X_S=\sigma_S]$ for any $S\subseteq [n]$ and $\sigma_S \in [q]^S$。
我々のアルゴリズムは、任意の分布に対して$O({n^{2/3}\cdot \operatorname{polylog}(n,q)})$並列時間を取る。
この結果は自己回帰モデルにおけるサンプリングに影響を及ぼす。
我々のアルゴリズムは、条件付き辺縁クエリ $\mathbb{P}_{X\sim \mu}[X_i=\sigma_i\;\vert\; X_S=\sigma_S]$ に答える等価なオラクルで直接動作する。
これは、任意の順序自己回帰モデルにおいて、およそ$n^{1/3}$-factor の高速化がサンプリング可能であることを示唆している。
我々は、任意の並列サンプリングアルゴリズムの実行時に対して$\widetilde{\Omega}(n^{1/3})$の低いバウンダリを示し、最大$\operatorname{poly}(n)$のカウントオラクルへのクエリを$q=2$でも示すことで、ポジティブな結果を補完する。
関連論文リスト
- Log-concave Sampling from a Convex Body with a Barrier: a Robust and Unified Dikin Walk [12.842909157175582]
我々は、$d$-dimensional log-concave distribution $pi(theta) propto exp(-f(theta))$ for $L$-Lipschitz $f$を考える。
本稿では,各繰り返しにおける障壁関数のヘシアンに対するスペクトル近似を計算するインプロバストサンプリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T05:32:51Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
ランク1テンソルを$otimes_i=1N mathbbRd$で完了する際のサンプルと計算複雑性を再考する。
本稿では,一対のランダム線形系上で,ガウス・ヨルダンに相当するアルゴリズムを許容する問題のキャラクタリゼーションを提案する。
論文 参考訳(メタデータ) (2024-08-10T04:26:19Z) - Outlier Robust Multivariate Polynomial Regression [27.03423421704806]
1,1]n 回 mathbbR$ は $(mathbfx_i,p(mathbfx_i)$ のうるさいバージョンである。
目標は、$hatp$を$ell_in$-distanceの$O(sigma)$を$p$から出力することである。
論文 参考訳(メタデータ) (2024-03-14T15:04:45Z) - Identification of Mixtures of Discrete Product Distributions in
Near-Optimal Sample and Time Complexity [6.812247730094931]
任意の$ngeq 2k-1$に対して、サンプルの複雑さとランタイムの複雑さをどうやって達成するかを示す(1/zeta)O(k)$。
また、既知の$eOmega(k)$の下位境界を拡張して、より広い範囲の$zeta$と一致させる。
論文 参考訳(メタデータ) (2023-09-25T09:50:15Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
報酬混合マルコフ決定過程(RMMDP)におけるエピソード強化学習の検討
我々のゴールは、そのようなモデルにおける時間段階の累積報酬をほぼ最大化する、ほぼ最適に近いポリシーを学ぶことである。
論文 参考訳(メタデータ) (2022-10-05T22:52:00Z) - Online Lewis Weight Sampling [62.38157566916501]
コーエンとペンはルイスの重量サンプリングを理論計算機科学コミュニティに導入した。
この重要なプリミティブを、オンラインコアセット、スライディングウィンドウ、対向ストリーミングモデルなど、他の設定に拡張した作品もいくつかある。
オンラインコアセット,スライディングウィンドウ,および逆ストリーミングモデルにおいて,すべての$pin(0,infty)$に対して,ほぼ最適に近い$ell_p$サブスペース埋め込みを設計する。
論文 参考訳(メタデータ) (2022-07-17T19:40:51Z) - Chi-square and normal inference in high-dimensional multi-task
regression [7.310043452300736]
本稿では,Multi-Task(MT)線形モデルにおける未知の係数行列$B*$サイズ$ptimes T$に対するカイ二乗法および正規手法を提案する。
論文 参考訳(メタデータ) (2021-07-16T11:19:49Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
我々は、$AinmathbbRdtimes n$へのアクセスを考えると、潜入$k$-vertex simplex $KsubsetmathbbRdtimes n$を学習する問題を考える。
実行時間における$k$への依存は、トップ$k$特異値の質量が$a$であるという自然な仮定から不要であることを示す。
論文 参考訳(メタデータ) (2021-05-17T16:40:48Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
離散確率測度が$N$原子と$n$実数値関数の集合で成り立つと、元の$N$原子の$n+1$の部分集合で支えられる確率測度が存在する。
我々は、負の円錐によるバリセンターの簡単な幾何学的特徴付けを与え、この新しい測度を「グリード幾何学的サンプリング」によって計算するランダム化アルゴリズムを導出する。
次に、その性質を研究し、それを合成および実世界のデータにベンチマークして、$Ngg n$ regimeにおいて非常に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-02T16:38:36Z) - Query complexity of heavy hitter estimation [6.373263986460191]
我々は、サブセット $mathcalSgamma_mathcalP$ を、基礎となる分布 $mathcalP$ をサポートする要素の特定の問題を考える。
それぞれのクエリはインデックス$i$であり、オラクルは値を$X_i$と$(b)$はペア$(i,j)$である。
それぞれの問合せモデルに対して、各ラウンドでどの問合せを全体に依存するかを決定するシーケンシャルな推定アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-05-29T07:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。