Efficient Budget Allocation for Large-Scale LLM-Enabled Virtual Screening
- URL: http://arxiv.org/abs/2408.09537v2
- Date: Fri, 25 Apr 2025 15:59:19 GMT
- Title: Efficient Budget Allocation for Large-Scale LLM-Enabled Virtual Screening
- Authors: Zaile Li, Weiwei Fan, L. Jeff Hong,
- Abstract summary: We consider an LLM-as-human-evaluator approach for conducting screening virtually, thereby reducing the cost burden.<n>We propose using a top-$m$ greedy evaluation mechanism, and design the explore-first top-$m$ greedy (EFG-$m$) algorithm.<n>Surprisingly, we uncover a bonus ranking effect, where the algorithm naturally induces an indifference-based ranking within the selected subset.
- Score: 0.9558392439655016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Screening tasks that aim to identify a small subset of top alternatives from a large pool are common in business decision-making processes. These tasks often require substantial human effort to evaluate each alternative's performance, making them time-consuming and costly. Motivated by recent advances in large language models (LLMs), particularly their ability to generate outputs that align well with human evaluations, we consider an LLM-as-human-evaluator approach for conducting screening virtually, thereby reducing the cost burden. To achieve scalability and cost-effectiveness in virtual screening, we identify that the stochastic nature of LLM outputs and their cost structure necessitate efficient budget allocation across all alternatives. To address this, we propose using a top-$m$ greedy evaluation mechanism, a simple yet effective approach that keeps evaluating the current top-$m$ alternatives, and design the explore-first top-$m$ greedy (EFG-$m$) algorithm. We prove that EFG-$m$ is both sample-optimal and consistent in large-scale virtual screening. Surprisingly, we also uncover a bonus ranking effect, where the algorithm naturally induces an indifference-based ranking within the selected subset. To further enhance practicality, we design a suite of algorithm variants to improve screening performance and computational efficiency. Numerical experiments validate our results and demonstrate the effectiveness of our algorithms. Lastly, we conduct a case study on LLM-based virtual screening. The study shows that while LLMs alone may not provide meaningful screening and ranking results when directly queried, integrating them with our sample-optimal algorithms unlocks their potential for cost-effective, large-scale virtual screening.
Related papers
- Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.
We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.
Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - Self-Supervised Prompt Optimization [16.06653117043314]
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities.
Existing prompt optimization methods rely heavily on external references such as ground truth or by humans.
We propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks.
arXiv Detail & Related papers (2025-02-07T17:45:16Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone.
The number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs.
We propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep.
arXiv Detail & Related papers (2024-11-30T18:54:32Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Query Routing for Homogeneous Tools: An Instantiation in the RAG Scenario [62.615210194004106]
Current research on tool learning primarily focuses on selecting the most effective tool from a wide array of options, often overlooking cost-effectiveness.
In this paper, we address the selection of homogeneous tools by predicting both their performance and the associated cost required to accomplish a given task.
arXiv Detail & Related papers (2024-06-18T09:24:09Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
Development of large language models (LLMs) has significantly pushed the frontiers of program synthesis.
Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations.
We develop ENAMEL, a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code.
arXiv Detail & Related papers (2024-06-10T04:19:20Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
We propose a framework for addressing the cost-effective query allocation problem for large language models (LLMs)
Our framework, named OptLLM, provides users with a range of optimal solutions to choose from, aligning with their budget constraints and performance preferences.
To evaluate the effectiveness of OptLLM, we conduct extensive experiments on various types of tasks, including text classification, question answering, sentiment analysis, reasoning, and log parsing.
arXiv Detail & Related papers (2024-05-24T01:05:37Z) - Efficient Prompt Optimization Through the Lens of Best Arm Identification [50.56113809171805]
This work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint.
It is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB)
arXiv Detail & Related papers (2024-02-15T05:31:13Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
We propose an uncertainty reduction framework using Large Language Models (LLMs) to improve entity resolution results.
LLMs capitalize on their advanced linguistic capabilities and a pay-as-you-go'' model that provides significant advantages to those without extensive data science expertise.
We show that our method is efficient and effective, offering promising applications in real-world tasks.
arXiv Detail & Related papers (2024-01-07T09:06:58Z) - qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling [0.0]
A sample-efficient approach to solving multiobjective optimization is via process oracle (GP) surrogates and MOBOOTS$.
We propose a Thompson sampling (TS) based approach ($qtextttPOTS$)
$qtextttPOTS$ solves a cheap multiobjective optimization on the GP posteriors with evolutionary approaches.
arXiv Detail & Related papers (2023-10-24T12:35:15Z) - Best Arm Identification for Stochastic Rising Bandits [84.55453174601826]
Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected.
This paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs.
We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE and R-SR.
arXiv Detail & Related papers (2023-02-15T08:01:37Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
We propose Rank-Ordered Bayesian Optimization with Trust-regions (ROBOT)
ROBOT aims to find a portfolio of high-performing solutions that are diverse according to a user-specified diversity metric.
We show that it can discover large sets of high-performing diverse solutions while requiring few additional function evaluations.
arXiv Detail & Related papers (2022-10-20T01:56:38Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Efficient Neural Network Analysis with Sum-of-Infeasibilities [64.31536828511021]
Inspired by sum-of-infeasibilities methods in convex optimization, we propose a novel procedure for analyzing verification queries on networks with extensive branching functions.
An extension to a canonical case-analysis-based complete search procedure can be achieved by replacing the convex procedure executed at each search state with DeepSoI.
arXiv Detail & Related papers (2022-03-19T15:05:09Z) - SelectAugment: Hierarchical Deterministic Sample Selection for Data
Augmentation [72.58308581812149]
We propose an effective approach, dubbed SelectAugment, to select samples to be augmented in a deterministic and online manner.
Specifically, in each batch, we first determine the augmentation ratio, and then decide whether to augment each training sample under this ratio.
In this way, the negative effects of the randomness in selecting samples to augment can be effectively alleviated and the effectiveness of DA is improved.
arXiv Detail & Related papers (2021-12-06T08:38:38Z) - Lookahead and Hybrid Sample Allocation Procedures for Multiple Attribute
Selection Decisions [0.9137554315375922]
This paper considers settings in which each measurement yields one sample of one attribute for one alternative.
When given a fixed number of samples to collect, the decision-maker must determine which samples to obtain, make the measurements, update prior beliefs about the attribute magnitudes, and then select an alternative.
arXiv Detail & Related papers (2020-07-31T15:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.