論文の概要: Order-Preserving Dimension Reduction for Multimodal Semantic Embedding
- arxiv url: http://arxiv.org/abs/2408.10264v3
- Date: Fri, 22 Aug 2025 01:39:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-25 12:20:05.351573
- Title: Order-Preserving Dimension Reduction for Multimodal Semantic Embedding
- Title(参考訳): 多モードセマンティックインベディングの次数保存次元低減
- Authors: Chengyu Gong, Gefei Shen, Luanzheng Guo, Nathan Tallent, Dongfang Zhao,
- Abstract要約: 次数保存次元削減は,低次元空間におけるKNNのランクを保ちつつ,埋め込みの次元性を低減することを目的としている。
我々はOPDRを複数の最先端次元推論技術、距離関数、埋め込みモデルと統合した。
様々なマルチモーダルデータセットの実験により、OPDRは計算コストを大幅に削減しつつ、リコール精度を効果的に維持することを示した。
- 参考スコア(独自算出の注目度): 0.8695396732128153
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Searching for the $k$-nearest neighbors (KNN) in multimodal data retrieval is computationally expensive, particularly due to the inherent difficulty in comparing similarity measures across different modalities. Recent advances in multimodal machine learning address this issue by mapping data into a shared embedding space; however, the high dimensionality of these embeddings (hundreds to thousands of dimensions) presents a challenge for time-sensitive vision applications. This work proposes Order-Preserving Dimension Reduction (OPDR), aiming to reduce the dimensionality of embeddings while preserving the ranking of KNN in the lower-dimensional space. One notable component of OPDR is a new measure function to quantify KNN quality as a global metric, based on which we derive a closed-form map between target dimensionality and key contextual parameters. We have integrated OPDR with multiple state-of-the-art dimension-reduction techniques, distance functions, and embedding models; experiments on a variety of multimodal datasets demonstrate that OPDR effectively retains recall high accuracy while significantly reducing computational costs.
- Abstract(参考訳): マルチモーダルデータ検索における$k$-nearest neighbors (KNN) の探索は計算コストがかかる。
マルチモーダル機械学習の最近の進歩は、データを共有埋め込み空間にマッピングすることでこの問題に対処している。
本研究は,低次元空間におけるKNNのランクを維持しつつ,埋め込みの次元性を低減することを目的とした秩序保存次元削減(OPDR)を提案する。
OPDRの特筆すべき構成要素は、KNNの品質を大域的指標として定量化する新しい測度関数である。
我々は、OPDRを複数の最先端次元推論技術、距離関数、埋め込みモデルと統合し、様々なマルチモーダルデータセットの実験により、OPDRは計算コストを大幅に削減しつつ、効率的に高精度なリコールを維持できることを示した。
関連論文リスト
- MPAD: A New Dimension-Reduction Method for Preserving Nearest Neighbors in High-Dimensional Vector Search [1.1701842638497677]
次元減少(DR)は、探索に不可欠な近傍構造を歪ませる傾向のため、ほとんど適用されない。
提案するMPAD: Maximum Pairwise Absolute differenceは、NNの近似関係を明示的に保存する教師なしDR法である。
複数の領域にまたがる実験により、MPADは近隣構造を保存する上で標準DR法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2025-04-23T00:59:00Z) - Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding [41.601022263772535]
次元化の削減は、データ分析や可視化における中心的な応用とともに、重要なパターンを保ちながら、特徴的次元を減らし、複雑なデータを単純化することを目的としている。
基礎となるデータ構造を維持するため、多次元スケーリング(MDS)法は距離などの対等な相似性を保存することに重点を置いている。
論文 参考訳(メタデータ) (2025-03-23T10:03:22Z) - Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
本稿では,非パラメトリック推定による暗黙的な連続性を持つ高次元階層データを埋め込むためのhGP-LVMを提案する。
論文 参考訳(メタデータ) (2024-10-22T05:07:30Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Canonical normalizing flows for manifold learning [14.377143992248222]
そこで本研究では,新しい目的によって変換行列を強制し,顕著で非退化的な基底関数をほとんど持たない正準多様体学習フロー法を提案する。
正準多様体の流れは潜在空間をより効率的に利用し、データを表現するために顕著で異なる次元を自動生成する。
論文 参考訳(メタデータ) (2023-10-19T13:48:05Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
本稿では, 多様体仮説の検証と基礎となる多様体次元推定に対する新しいアプローチを提案する。
我々の幾何学的手法はミンコフスキー次元計算のためのよく知られたボックスカウントアルゴリズムのスパースデータの修正である。
実データセットの実験では、2つの手法の組み合わせに基づく提案されたアプローチが強力で効果的であることが示されている。
論文 参考訳(メタデータ) (2021-07-08T15:35:54Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Unsupervised Discretization by Two-dimensional MDL-based Histogram [0.0]
教師なしの離散化は多くの知識発見タスクにおいて重要なステップである。
本稿では,2次元データのより柔軟な分割を可能にする表現型モデルクラスを提案する。
本稿では,各次元を交互に分割し,隣接する領域をマージするPALMというアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-02T19:19:49Z) - Information-Theoretic Limits for the Matrix Tensor Product [8.206394018475708]
本稿では,ランダム行列の行列テンソル積を含む高次元推論問題について検討する。
本稿では,高次元行列保存信号の解析のための新しい手法を紹介する。
論文 参考訳(メタデータ) (2020-05-22T17:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。