論文の概要: Automated Prompt Engineering for Cost-Effective Code Generation Using Evolutionary Algorithm
- arxiv url: http://arxiv.org/abs/2408.11198v2
- Date: Tue, 29 Jul 2025 23:53:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.682232
- Title: Automated Prompt Engineering for Cost-Effective Code Generation Using Evolutionary Algorithm
- Title(参考訳): 進化的アルゴリズムを用いたコスト効果コード生成のための自動プロンプトエンジニアリング
- Authors: Hamed Taherkhani, Melika Sepindband, Hung Viet Pham, Song Wang, Hadi Hemmati,
- Abstract要約: 大規模言語モデルでは、様々なソフトウェア開発タスク、特にコード生成での利用が増加している。
進化的プロンプト・エンジニアリング・フォー・コード(EPiC)という代替手法を提案する。
EPiCは軽量な進化的アルゴリズムを使用して、オリジナルのプロンプトを改良したバージョンに洗練し、高品質なコードを生成する。
最先端(SOTA)のコード生成エージェントに対する評価では、EPiCはパス@kの最大6%の改善を達成できるだけでなく、ベースラインよりも2~10倍コスト効率が高いことが示されている。
- 参考スコア(独自算出の注目度): 8.009881267479189
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models have seen increasing use in various software development tasks, especially in code generation. The most advanced recent methods attempt to incorporate feedback from code execution into prompts to help guide LLMs in generating correct code in an iterative process. While effective, these methods could be costly due to numerous interactions with the LLM and extensive token usage. To address this issue, we propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC), which leverages a lightweight evolutionary algorithm to refine the original prompts into improved versions that generate high quality code, with minimal interactions with the LLM. Our evaluation against state-of-the-art (SOTA) LLM based code generation agents shows that EPiC not only achieves up to 6% improvement in pass@k but is also 2-10 times more cost-effective than the baselines.
- Abstract(参考訳): 大規模言語モデルでは、様々なソフトウェア開発タスク、特にコード生成での利用が増加している。
最も先進的な手法は、コード実行からのフィードバックをプロンプトに組み込むことで、反復的なプロセスで正しいコードを生成するのに役立つ。
有効ではあるが、これらの手法はLLMとの多くの相互作用と広範囲なトークンの使用のためにコストがかかる可能性がある。
この問題に対処するため,従来のプロンプトを改良し,LLMとの相互作用を最小限に抑えた改良版に改良する,EPiC(Evolutionary Prompt Engineering for Code)という代替手法を提案する。
最先端(SOTA)のコード生成エージェントに対する評価では、EPiCはパス@kの最大6%の改善を達成できるだけでなく、ベースラインよりも2~10倍コスト効率が高いことが示されている。
関連論文リスト
- Code Evolution Graphs: Understanding Large Language Model Driven Design of Algorithms [2.827573861233375]
大規模言語モデル(LLM)はコード生成において大きな可能性を証明しています。
3つのベンチマーク問題クラスの結果を示し、新しい知見を示す。
論文 参考訳(メタデータ) (2025-03-20T19:30:22Z) - Pragmatic Reasoning improves LLM Code Generation [35.78260347663757]
我々は,Rational Speech Act (RSA) フレームワーク上に構築された新しいコード候補付け機構であるCodeRSAを提案する。
我々は、人気のあるコード生成データセット上で、最新のLarge Language Modelの1つを用いてCodeRSAを評価する。
論文 参考訳(メタデータ) (2025-02-20T12:44:26Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - zsLLMCode: An Effective Approach for Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
本稿では,大言語モデル(LLM)と文埋め込みモデルを用いて,新たなゼロショット手法であるzsLLMCodeを提案する。
その結果,最先端の教師なしアプローチに対する提案手法の有効性と優位性を実証した。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
大規模言語モデル(LLM)は精度に苦しむが、リスクの高いアプリケーションには適さない。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T15:59:06Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - A Performance Study of LLM-Generated Code on Leetcode [1.747820331822631]
本研究では,Large Language Models (LLM) によるコード生成の効率性を評価する。
モデル温度や成功率などの要因とコード性能への影響を考慮し、18個のLLMを比較した。
LLMは、人間によって書かれたコードよりも平均的に、より効率的なコードを生成することができる。
論文 参考訳(メタデータ) (2024-07-31T13:10:03Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - On Evaluating the Efficiency of Source Code Generated by LLMs [31.8121544062256]
より効率的なコードは、LCM支援プログラミングで完了したプログラムやソフトウェアの性能と実行効率を向上させる。
まず,HumanEval と MBPP の2つのベンチマークで LLM が生成したコードの有効性を評価する。
そして,オンライン審査プラットフォームLeetCodeから,より難しい評価を行うために,一連のプログラミング問題を選択する。
論文 参考訳(メタデータ) (2024-04-09T05:59:39Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。